Lecture 10

Backpropagation

Spring 2022

Bill Freeman, Phillip Isola

|I||- i/ 6.869/6.819 Advances in Computer Vision
L

2. Backprop and Ditterentiable Programming

* Review of gradient descent, SGD
* Forward propagation

e Computing gradients

e Backward propagation

e Computation graphs and differentiable programming

y@>
“clown fish”

()

Deep learning

| earned

Loss

L(fo(x"),y")

Gradient descent

()) i‘\\\
\‘“\\
“‘\\%%%%ﬁ\\

; 2l S
‘;61/// "‘i
B\

IS
NI 0%
\

05

H* — arg min J(6’)
0

GGradient descent

N .
f* = arg min Z L(fo (X(Z))a Y(Z))
O =1

e
-

SSTSoT T)
“““““ (
NNSS=os e
\ S
\I‘
S
S
—

/ ()
N7
= OGS 41 740 = . .
J((g) """'.',"‘ ““00‘0277/ 0'0“ e | ' f dleﬂt desceﬂ’[.
...... S5 (X577 %! e f[lon O ra
S| || 7 Orefterationof g

N Z NN
0.J(0)

== ‘ =
= i:‘.:‘:\‘!;;:'»\\\\\\ \” 'I,’ =

) /28490
555NN
== == SSSS N ”
‘..:‘:::::.:0:0:0.0.‘:‘::‘: A\ \, 7,,,//7/
S

~< 77 ZF 7
7

et—l—l __ 6)t T

Ie'arning rate

Stochastic gradient descent (SGD)

* Want to minimize overall loss function J, which is sum of individual losses over each example.
* |n Stochastic gradient descent, compute gradient on sub-set (batch) of data.
f batchsize=1 then B Is updated after each example.
f batchsize=N (full set) then this is standard gradient descent.
» (Gradient direction is noisy, relative to average over all examples (standard gradient descent).
* Advantages
* Faster: approximate total gradient with small sample
* Implicit regularizer
* Disadvantages

* High variance, unstable updates

Forward pass

» Consider model with L layers. Layer [has
vector of weights Wy

* Forward pass: takes input x;-1 and passes
it through each layer i

x; = fi(x;—1, Wy)

* Qutput of layer [is X .

* Network output (top layer) is Xz, .

(output) Xz,
,}

fo(xr—1,Wp)

TXL—1

R

fi(x;—1, Wy)

TXZ—1

Forward pass

Consider model with L layers. Layer [has
vector of weights Wy

Forward pass: takes input x;—1 and passes
it through each layer i

= fi(xi—1, Wy)
Qutput of layer [is Xi .

Network output (top layer) is X, .

Loss function £ compares X1 to y.

Overall cost Is the sum of the losses over all
training examples:
9 P 7_ Z £(xD, 30

GGradient descent

V. S
Z 0RO e
e\
= W\ AL
SR R

~ \\""'"Il,///

= N
/77
X1}
\\"II/

———
e -

W{ ‘w2

* \We need to compute gradients of the cost with frxr -1, W)

respect to model parameters W .

e By design, each layer is differentiable with respect

to Its parameters and input. f2(x1, W)

Computing gradients

J
To compute the gradients, we could start by writing the full e
energy J as a function of the network parameters. TXL 1
fo(xp—1,Wp)
= 2 LUl el x), W), W), ... W),y) s
X]
fi(x;—1, W)
TXl—l
And then compute the partial derivatives... - (XIT’;; S
6)1] (TX1)
J1(X0, W1
OW, OT
X0 Yy

instead, we can use the chain rule to derive a compact algorithm: backpropagation

Matrix calculus

* x column vector of size [n x 1] : 1
L2
X =

Ln

 We now define a function on vector x: y = f(x)
* [f v Is a scalar, then
@_(ﬁ o ... 3y)

8981 8:1:2 8a:n

00X
The derivative of y Is a row vector of size |1 x n|

* |f y IS a vector [m x 1], then (Jacobian formulation):

oY1 dyi ... Ou

8:131 8:132 8ai‘n
Jy
0 OYm OYm .. OYm

8:131 8:132 8:&,,,

The derivative of y is a matrix of size |m x n]
(M rows and n columns)

Matrix calculus

e If y is a scalar and X is a matrix of size [n x m/|, then

Oy Oy L 0y
32811 35821 aiUfn,l
0y
0 Oy Oy L 0y
0T 1m 0T 2m 0% nm

The output is a matrix of size [m x n|

Wikipedia: The three types of derivatives that have not been considered are those involving vectors-by-matrices, matrices-by-vectors,
and matrices-by-matrices. These are not as widely considered and a notation 1s not widely agreed upon.

Matrix calculus

* Chain rule:
For the function: A(x) = f(g(x))

ts derivative is: h'(x) = f'(g(x))g’ (x)

and writing z = f(u), and u = g(x):

oz _os| om

OxX |, _., - Ou u=g(a) OxX |, _.,
I \ \

m xmn| |mXp| p X n]

with p = length of vector u = |u|, m =|z|, and n = |x

Example, If |z| =1, |u| =2, |x| =4

h(x)= I HIHE - Bl HHEEE
BN

Computing gradients

To compute the gradients, we could start by writing the full
energy J as a function of the network parameters.

ZE’ fr(. fo(fi(xy), W), Wa), .. . W),y

And then compute the partial derivatives... instead, we
can use the chain rule to derive a compact algorithm:
backpropagation

Computing gradients

. . J
The loss J I1s the sum of the \osses assoclated A
(4) L(Xp,y)
with each training example {x;’,y"} e
fr.(xr—1, Wr)
TXL—1
Z£ 7y(2) W) 'Eer
fi(xi—1, Wy)

ts gradient with respect to each of the network’s

parameters w Is: f2<x1,Tw2>
N z i) . |
PN - > OLxy v W) f1(x0, W)
ow — Oow T

IS how much J varies when the parameter w Is varied.

Computing gradients

We could write the loss function to get the gradients as: {
L(xr,
[’(X[ny;w) — [’(fL<XL—17WL)7Y) TXL ey
* fo(xp—1,Wp)
If we compute the gradient with respect to the parameters of TXH
the last layer (output layer) Wi, using the chain rule: fz(Xz—Tlx;Vz)
Tx1_1
oL oL Oxi _ OL Ofp(xp—1, Wy) -
OW 1 N ox; OWp N 0Xr, OW 1 f2(X17TW2)
f1(X0;W1)
|
X0 Yy

How much the loss changes when we change W_?

The cha
last laye

nge Is the produ

ct betwee

N how much the |0ss ¢

~and how much the outpL

t changes when we c¢f

s

al’

nges w

ge the

nen we change the output of the

ayer parameters.

Computing gradients: loss layer

If we compute the gradient with respect to the parameters of
the last layer (output layer) Wi, using the chain rule:

0L 0L 8XL 0L | 6fL(xL_1,WL)

OW, 0x;, OW. Oxy OW |
/ N\
For example, for an Euclidean loss: Will depend on the
1 5 layer structure and
L(Xp,y) = 9 X7, — YHQ non-linearity.

The gradient is:
0L

Computing gradients: layer |

We could write the full loss function to get the gradients:

ﬁ(XL,Y;W) — L(fL(- "fQ(fl(X07W1)7W2)7 .- -WL)>Y)

If we compute the gradient with respect to W, using the chain rule:

8[: 8[, aXL @XL 1 8Xl_|_1 6’xl

OW, 0x; 0Ox;_1 Ox; o 0Ox; OW,
\—Y—I '\

Ofi1(xi—1, Wy)

5"1 OW,
And this can be
computed iteratively!

This Is easy.

i\

Backpropagation

oL oL And this can be computed iteratively.

- - We start at the top (L) and we can
0Xi41 axl 0X; -1 compute the gradient at layer |-1
0L .
f we have the value of p we can compute the gradient at the
X]

layer below as:

oL 9L Ox
aXl_l N aXl 8Xl_1

/T \

Gradient Gradient 0 fi(xi—1, W)
layer |- layer | Ox]—1

BaCKprOpag ation Goal: to update parameters of layer [

- Layer [has two inputs (during training)

X[—1 —>
oL _
fl-|-1 Ox;
3 oL
— * We compute the outputs
- X O
’ v x; = fi(x—1, W
Hidden layer [1 (Xl_l, Wl) = filxi-1, W)
i , L _ 0L Dfilxi, Wy
[Xll oL 0X;_1 N 0X; 0Xj_1
: 0%
V o * o compute the output, we need:
fi-1 0f1(x;—1, W)
Forward Backward 0X_1
PASS PASS * To compute the weight update, we need:
0f1(x;-1, W)

OW,

BaCKprOpag ation Goal: to update parameters of layer [

- Layer [has two inputs (during training)

Xl—1 —>
0L
fi+1 o
A oL
i * We compute the outputs
L X 2
: ad X = 1, W
Hidden layer I | fi(xi—1, W) X;£ fl(Xla:: 8;2(W)
E ------ _— . l Xl_l, l
Xl—1 oL > 0Xj_1 N 00X 0Xj_1
53X1—1
v . .
fiy * [The weight update equation Is:
oL 0L 9fi(xi—1, Wy)
Forward Backward OW, 0x; OW,
0ass 0asSs

0J)T (sum over all training

W, <~ W; + 17 (OW, examples to get J)

Backpropagation summary

* Forward pass: for each training example,

compute the outputs for all layers:

x; = fi(x;—-1, W)

* Backwards pass: compute loss

derivatives iteratively from top to bottom:
oL B oL 8fl(Xl—17Wl)

8Xl_1 0Xl 8Xl_1

« Compute gradients w.r.t. weights, and

update weights:

oL B oL .afl(Xl—th)
8Wl N aXl 0Wl

! Lj‘ﬁ | inear Module

» Forward propagation: Xout = f(Xin, W) = Wxy,,
Ixin 0L
aXin
v

- .
el of S5
1 EEEN N

» Backprop to input: . Xoutl % [Xin
oL 0L Of(xin, W) OL .8X0ut
8Xin B 8Xout aXin B 8Xou’c axin

If we look at the | component of output Xy, With respect to the | component of the input, Xi:

OX gyt |
aX. t, Wzg _ 3f(;<m, W)
1N Xin

fheretore HEEN-EEE EEEN
HEEE
HEEE

= W

8 Xout

: l oL | inear Module

: Xout

» Forward propagation: Xout = f(Xin, W) = Wxiy

f(Xinv W) . |
s * Backprop to input:
Xin
| 0L oL
I\ V 8Xin B aXout i

Now let’s see how we use the set of outputs to compute the
weights update equation (backprop to the weights).

8 Xout

] l o Linear Module

; ¢ 0N Xout = in;W = W in
F(Xam, W) Forward propagation: Xeus = f(X) X

Xin oL » Backprop to weights:
: OXin 0L 0L | Of(Xin, W) 0L | OX gut
M OW OXyut OW Ox.ye OW

if we look at how the parameter W; changes the cost, only the | component
of the output will change, therefore:

0L 0L OXout, oL X 0L 0L
p— . — . . —— = Xip °
6)sz 6X0ut7; awz] '[axouti g aW aXout
8Xoutz~ — ¥
8W7/j N T

And now we can update the weights (by summing over all the training examples):

0J (sum over all training
k41 k
W — W5+ (@W) examples to get J)

| Inear Module

oL oL
> — Xin
oW O0X gut
Weight updates:
0L 1wk 9T\
X0 \ "4 8Xin W +— W 1] 8W

N N
. . 0J Z 0L
J — E L:(X(Z), y(z)) —_— p— Xll’l .

Xout |x(i) y(3)

Sum over N training pairs

Xout

T l o Pointwise function

' * Forward propagation:
f(Xinyw) p p g

h = an arbitrary function, b, Is a bias term.
aXin

[Xouti — h(Xinf,; _I_ b’L)
TXin J oL

* Backprop to input: 0L _ 0L OXow, _ _OL Oh(Xn, +bi)

aXini a>(011't7; aXini 8Xoutz- 8Xini

0L 0L 0o, OL Oh(Xin, + b;)

*Backprop to bias: 5" = 50 To T T Oxowr ob;

We use this last expression to update the bias.

Xout

T l o Pointwise function

' * Forward propagation:
f(Xinyw) p p g

h = an arbitrary function, b, Is a bias term.

[Xouti — h(Xinf,; _I_ b’L)
Xin @L
I JaXin
* Backprop to input: oL _ 9k Now, _ 0L - h'(Xin; + b;)

aXin,,; 8Xout,,; @Xin,,; a}(0111:7,;

oL 9L OXew, OL W (x4 + b)
* Backprop to bias: Ob; O%Xome. Ob; in; T 0i

a>(Oll'l: i

We use this last expression to update the bias.

Some useful derivatives:

For hyperbolic tangent: tanh/(aj‘) — 1 — tanh? ()

For ReLU: h(x) = max(0,z), h'(z)= 1(x > 0)

FPointwise function

Xout

Fuclidean loss module

oL
O%i — Xin — Y

0L

Xin ‘ 6Xin

Homework: Convolution Module

Assume the input X, and output Xt are 1

The convolution kerne

oL

Xout aXout

oL

aXin

s W, and has length k < N

D signals of the same length N.

Weight updates:

WEHL Wk +n(

Derive the equations that go inside each box.

Discuss how you handle the boundaries.

(I

0J

OW

:

Homework: max pooling module

Assume the input X, and output X, are 1

Xout

oL

aXout

Weight updates:

oL

aXin

Derive the equations th

Discuss how you hand

WEHL Wk +n(

at go inside each box.

e the boundaries.

D signals of different lengths.

(I

0J

OW

:

Branching and Merging

F | e
x*, %) 0[x®, xP]
| 0L x? =x x? = x oL
e hdad

oL HHIETSE oL branch Ox”
oxa oxPb
~ NN t | oc

x |2 o

D

Computation Graphs

f all the modules ([_]) are differentiable, and
they are connected to form a Directed Acyclic
Graph (DAG), then you can use backprop to
train this whole system!

f D? This is an example of a computation graph.

Many programs can be represented with
differentiable DAGs, not just “neural nets”.

Differentiable programming

Deep learning Differentiable programming
0L 0L
| Xour ||, PXour | Xour ||, PXoue PyTorch
f(Xin7 W) EE—]
TensorFlow ™

Differentiable programming

* Yann LeCun

Deep nets are popular for a few reasons:

. ; ; OK, Deep Learning has outlived its usefulness as a buzz-phrase.
1 . EaSy tO (l)ptlmlze (dlﬁerentlab‘e) | Deep Learning est mort. Vive Differentiable Programming!
2. Compositional “block based programming”

123 Thomas G. Dietterich

o
DL is essentially_a new -style of
An emerging term for general models with these s o, s M
oroperties is differentiable programming. il pmlbpssmmenne-

pooling, LSTM, GAN, VAE, memory
units, routing units, etc. 8/

ssremecs 1L PO SOD 3O

Differentiable programming

wnereis L[Sy :

] |
|
count — color
Parser Layout
|

CNN

[Figure from “Neural Module Networks”, Andreas et al. 2017]

Programmed by a human

Programmed by backprop

e.g., programmed by tuning behavior to match
fraining examples

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. to any scalar cost

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. to any scalar cost

|

/ O How the loss changes when the functional node
O highlighted changes

Backprop lets you optimize any node (function) or edge (variable) in your
computation graph w.r.t. to any scalar cost

|

/ O How the loss changes when the functional node
O highlighted changes

o]

A How the cost changes when the input data changes

0

Optimizing parameters versus optimizing INputs

dolphin

cat

grizzly bear

angel fish

chameleon ——» J
clown fish

iguana

elephant

- 0000000 0| «

a J - How much the total cost is increased or decreased by changing the

8 6) parameters.

Optimizing parameters versus optimizing INputs

Nucr

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana
elephant

- 0000000 0| «

the “chameleon” score is increased or decreased by

Nng t

ne image pixels.

Unit visualization via backprop

al'g Inax yj
X

Dy;(x)
OxX

k+1
X" %qutn

Unit visualization

Make an image that maximizes the “cat”
output neuron:

arg max y; + AR(x)

[https://distill.pulb/201 7 /feature-visualization/]

Unit visualization

Make an image that maximizes the
value of neuron | on layer | of the

arg max h;, + AR(x) network:
»
O(h;. (x)+ AR(x T~
xF L xF g (fu ()ax (%)) g
x=xF

AN\
2o

[https://distill.pulb/201 7 /feature-visualization/]

e e
1 - W e e o Sy - il ',".. Pl
pa™ o5 o P r’f"‘t-ﬁ_.‘..“’j"::;,f-;"- i

-

- 'f":;;.

Y DA

) Deep dream” [https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html]

CL| P+GAN Differentiable program that measures the similarity between text and images

What is the answer to the Toxt €1
ultimate question of life, — S
the universe, and everything?
To maximize
v this
€1 €9 <
A
Optimize this C2
Image
) .
Encoder

Code: https://colab.research.google.com/drive/1_4PQqgzM_0KKytCzWtn-ZPi4dcCa5bwK2F?usp=sharing

BacKpropagation example

node 1 W3- node 3

iINput output

tanh
Learning rate n = -0.2 (because we used positive increments)

—uclidean loss

Training data: Input desired output
node 1 node 2 node 5
1.0 0.1 0.5

—Xercise: run one iteration of back propagation

BacKpropagation example

node 1

node 3

W13=1.02

0.17

iINput output

node 2

1.0 tanh

After one iteration (rounding to two digits)

Step by step solution

First, let’'s rewrite the network using the modular block notation:

We need to compute all these terms simply so we can find the weight updates at the bottom.

Our goal is to perform the following two updates:

oL \'
ROSRI O

oL \'
k+1 ~xrk
Wl _Wl_l_n(an)

where Wkare the weights at some iteration k of gradient descent given by the first slide:

I -3
Wi=(op 1) Wi=0 -1

First we compute the derivative of the loss with respect to the output:

oL
8X3_ 3Y

Now, by the chain rule, we can derive equations, working backwards, for each remaining
term we needq:

OL| 0L Ox3 oL

0%yl Ox3 Oxy |Ox3|

OL| L dxo L dtanh(xy) |OL 2
OL|_ _ loch,
0X1 8X2 (7X1 8}(2 aXl 0X2 (tan (Xl))

ending up with our two gradients needed for the weight update:
oL oL 0x; oL

p— — XO—
OWgo 0x1 OWy 0x1 \ Notice the ordering of the two terms being multiplied

oL OL Oxs EYe here. The Qotgtion hides the deﬁai!s but you can vvritg
J— p— X S
OW, Ox3 OW, 2 9% out all the indices to see that this is the correct ordering

— or just check that the dimensions work out.

The values for input vector xo and target y are also given by the first slide;
- (1.0
0= \o1 y =05

Finally, we simply plug these values into our equations and compute the numerical updates:

Forward pass:

1 -3\ (1 0.7
¥1 = WoXo = (0.2 1) (0.1) - (0.3)

0.604
X9 — tanh(xl) — 0291>

0.604
x3 = Wixs = (1 —1) <0.291> = (.313

1
L = §(X3 —y)? =0.017

Sackward pass:

a—ﬁ — X3 — VY = —(0.1869
8X3
diagonal matrix because tanh is a
L _ 9L\ — 01869 (1 —1) = (—0.1869 0.1869) pointwise operation
(3X2 8X3 /
oL oL) B 1 — tanh?(0.7) 0 B
o 6—}(2(1 — tanh®(x;)) = (—0.1869 0.1869) () | _tanh2(0.3)> = (—0.1186 0.171)

oL oL (1.0 ~0.1186 0.171
oW, Vox; <0.1> (~0-1186 - 0.171) = (—0.01186 o.o171>

0L 0L (0.604 —0.113
OW, 20xs <o.291> (~0.1186) = (—0.054)

Gradient updates:

T
Wit :W’§+n(£ff >
0

(1 =3\ _ (01186 0.171
—\02 1 “\—0.01186 0.0171

~(1.02 -3.0
—\0.17 1.0

oL\
Wk—|—1 :Wk}
1 1 _I_n(an)

= (1 —1)-0.2(—0.113 —0.054)
= (1.02 —0.989)

