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13. Temporal Processing and RNNs

* Sequence problems
 Temporal convnets
e Recurrent Neural Networks (RNNs)
e [STMs
e Attention
* Example problems:
* Image captioning

* Sound prediction



Announcements

® Start thinking about final project ideas

® |[nformation and some suggested topics here: http://6.869.csail.mit.edu/

sp22/project.html

® Proposals due March 31st


http://6.869.csail.mit.edu/sp22/project.html
http://6.869.csail.mit.edu/sp22/project.html
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How do we model sequences?

one to many

Input: No
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Im2Caption
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Input: Sequence Input: Sequence

Output: No
sequence Output: Sequence
Example: sentence Example: machine translation, video
classification, captioning, open-ended question
multiple-choice answering, video question answering

question answering

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Convolutions In time
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“The Persistence of Memory”,
Dali 1931

It bothered him that the dog at three fourteen (seen from the side) should have the
same name as the dog at three fifteen (seen from the front).
— “Funes the Memorius”, Borges 1962
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Recurrent Neural Networks (RNNS)
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNS)
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Recurrent Neural Networks (RNNSs)
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Deep Recurrent Neural Networks (RNNS)
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Backprop through time
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Recurrent linear layer




The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

 [his kind of memory Is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart



The problem of long-range dependences

Outputs y

Hidden h

oy, Oy; Ohy ohy Ohg time

O0xo Oh,0h,_;  Ohg 0%

e Capturing long-range dependences requires propagating information
through a long chain of dependences.

e Old observations are forgotten

e Stochastic gradients become high variance (noisy), and gradients may
vanish or explode




LSTMs

Long Short Term Memory
[Hochreiter & Schmidhuber, 1997]

A special kind of RNN designed to avoid forgetting.

This way the default behavior is not to forget an old state. Instead of forgetting
by default, the network has to learn to forget.
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[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Ci = Cell state

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ft Jt =0 (Wf’[ht—laft] bf)

Decide what information to throw away from the cell state.

Each element of cell state is multiplied by ~1 (rememlber) or ~0 (forget).

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

which indices to write to

/

it =0 (Wi-lhi—1,2¢] + b;)
t — taﬂh(WC'[ht_l,.@t] -+ bC’)

what to write to those indices

Decide what new information to add to the cell state.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

f itr-%' (' = ft * Cp_1 + 14 * ét

Forget selected old information, write selected new information.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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After having updated the cell state’s information, decide what to output.

[Slide derived from Chris Olah: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Image Captioning

Language A grou_p of people
Deep CNN Generating shopping at an
RNN outdoor market.

O

I There are many
vegetables at the
fruit stand.

[Example above from: Vinyals, Toshev, Bengio, Erhan, CVPR 2015, https://arxiv.org/abs/1411.4555]



Recipe for deep learning in a new domain

1. Transform your data into numbers (e.g., a vector)

2. Transform your goal into a numerical measure (objective function)

3. #1 and #2 specify the “learning problem”

4. Use a generic optimizer (SGD) and an appropriate architecture (e.g., CNN or
RNN) to solve the learning problem



How to represent words as numbers”?

One-hot vector

Training data Training data Training data




How to represent words as numbers”?
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How to represent words as numbers”?

Prediction 'y
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Rather than having just a handful of
possIble object classes, we can
represent all words in a large
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How to represent words as numbers”?

Prediction 'y
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This problem is called image captioning
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Max-likelihood objective: maximize probabillity the

model assigns to each target word: arg max log pg(v)
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Testing

Samples
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out Sample from predicted distribution over words.
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Alternatively, sample most likely word.



't was very popu\ar a few years ago
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A person riding a
motorcycle on a dirt road.

A group of young people
pl ing a game of frisbee.

A herd of elephants walking
acrossad rass field.

Two dogs play in the grass.

A skateboarder does a trick

A dog is jumping to catch a
frisbee.

A refrigerator filled with lots of

Two hockey players are
food and drinks.

fighting over the puck.

A little girl in a pink hat is
blowig g bubbles.
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A close up of a cat laying
on a couch.

A yellow school bus parked
“TSSSNin a parking lot.
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The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

 [his kind of memory Is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart
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The problem of long-range dependences

Other methods exist that do directly link old “memories”
(Observations or hidden states) to future predictions:

e [emporal convolutions

o Attention / Transformers (see https://arxiv.org/albs/1706.03762)

e Memory networks (see https://arxiv.org/abs/1410.3916)


https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1410.3916
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Modeling arbitrarily long sequences

O O
* RNNs — recurrent weights are shared across time O—>§ O O
O O O
O O

 Convolution — conv weights are shared across time
O O
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o Attention — weights are dynamically determined (/%\
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Anything you can do w.r.t. time, you can do w.r.t. space,

and vice versa.

Popular right now: treat
DIXels as a sequence anad
then apply sequence
modeling methods.

Generative Pretraining from Pixels

Mark Chen! Alec Radford! Rewon Child! Jeff Wu! Heewoo Jun! Prafulla Dhariwal! David Luan
Ilya Sutskever '

Abstract

Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input structure.
Despite training on low-resolution ImageNet with-
out labels, we find that a GPT-2 scale model learns
strong image representations as measured by lin-
ear probing, fine-tuning, and low-data classifica-
tion. On CIFAR-10, we achieve 96.3% accuracy
with a linear probe, outperforming a supervised
Wide ResNet, and 99.0% accuracy with full fine-
tuning, matching the top supervised pre-trained
models. An even larger model trained on a mix-
ture of ImageNet and web images is competitive
with self-supervised benchmarks on ImageNet,

achieving 72.0% top-1 accuracy on a linear probe
of our features.

ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.






The Greatest Hits dataset




The Greatest Hits dataset

- 978 videos of people probing scenes with a drumstick
-+ 46,620 hits and scratches

- Material, action, and reaction labels (used for analysis




Sound and materials
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Sound and materials
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Predicting sound features
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LSTM

CNN

Video

Predicting sound features

+ Two-stream CNN: color + spacetime images




Generating a waveform
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Generating a waveform

Audio
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Our output
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