





# 13. Temporal Processing and RNNs

- Sequence problems
- Temporal convnets
- Recurrent Neural Networks (RNNs)
- LSTMs
- Attention
- Example problems:
  - Image captioning
  - Sound prediction

# Announcements

- Start thinking about final project ideas
- Information and some suggested topics here: <a href="http://6.869.csail.mit.edu/sp22/project.html">http://6.869.csail.mit.edu/sp22/project.html</a>
- Proposals due March 31st







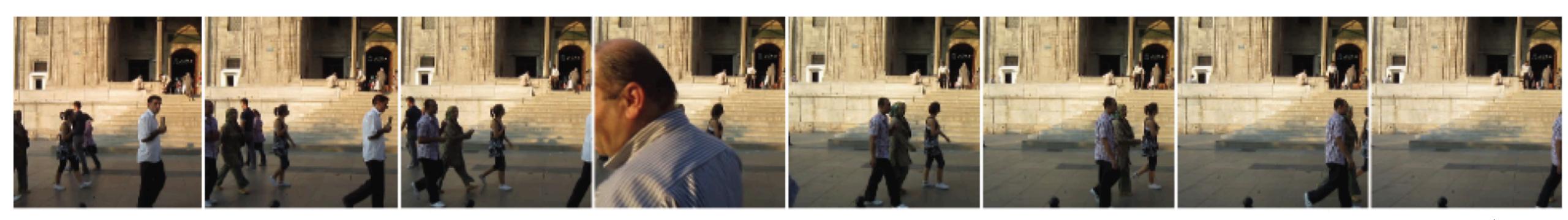








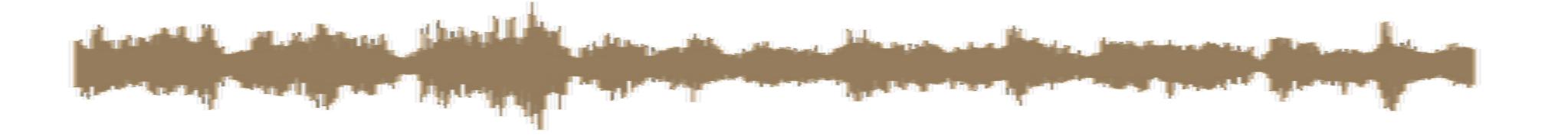
## Sequences



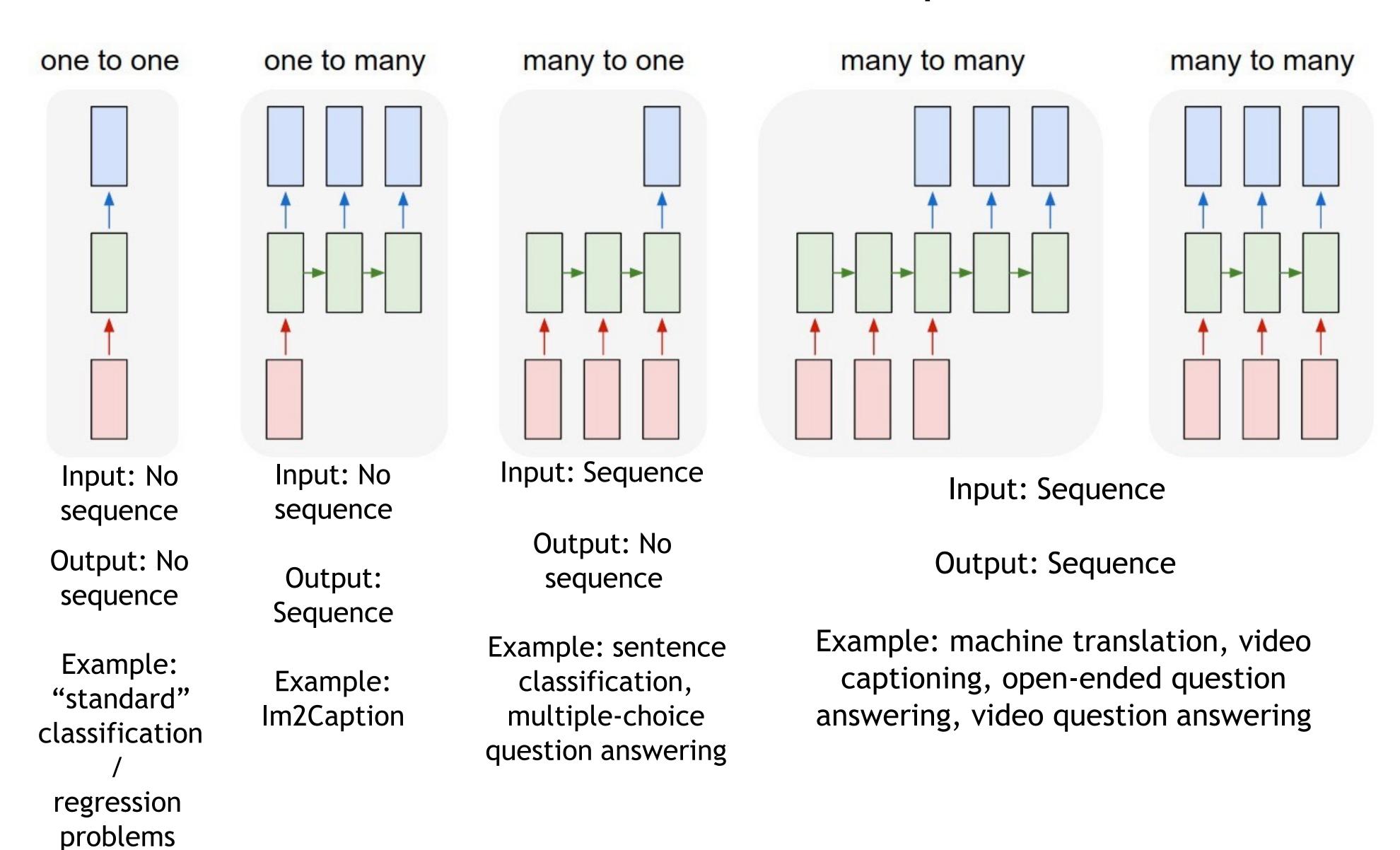
time

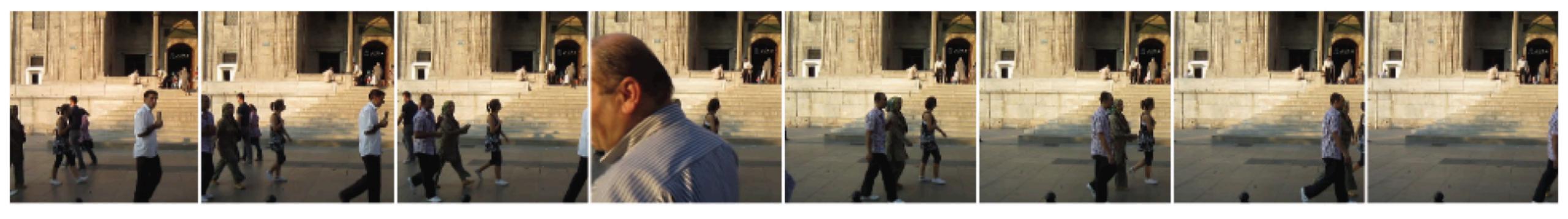
"An", "evening", "stroll", "through", "a", "city", "square"

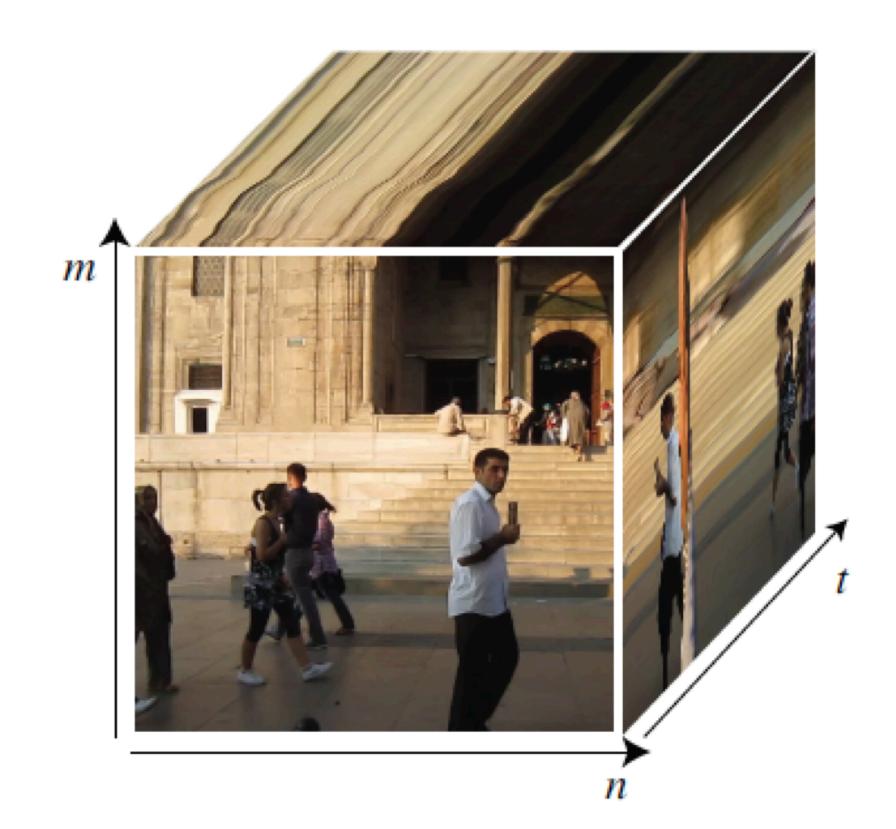
time

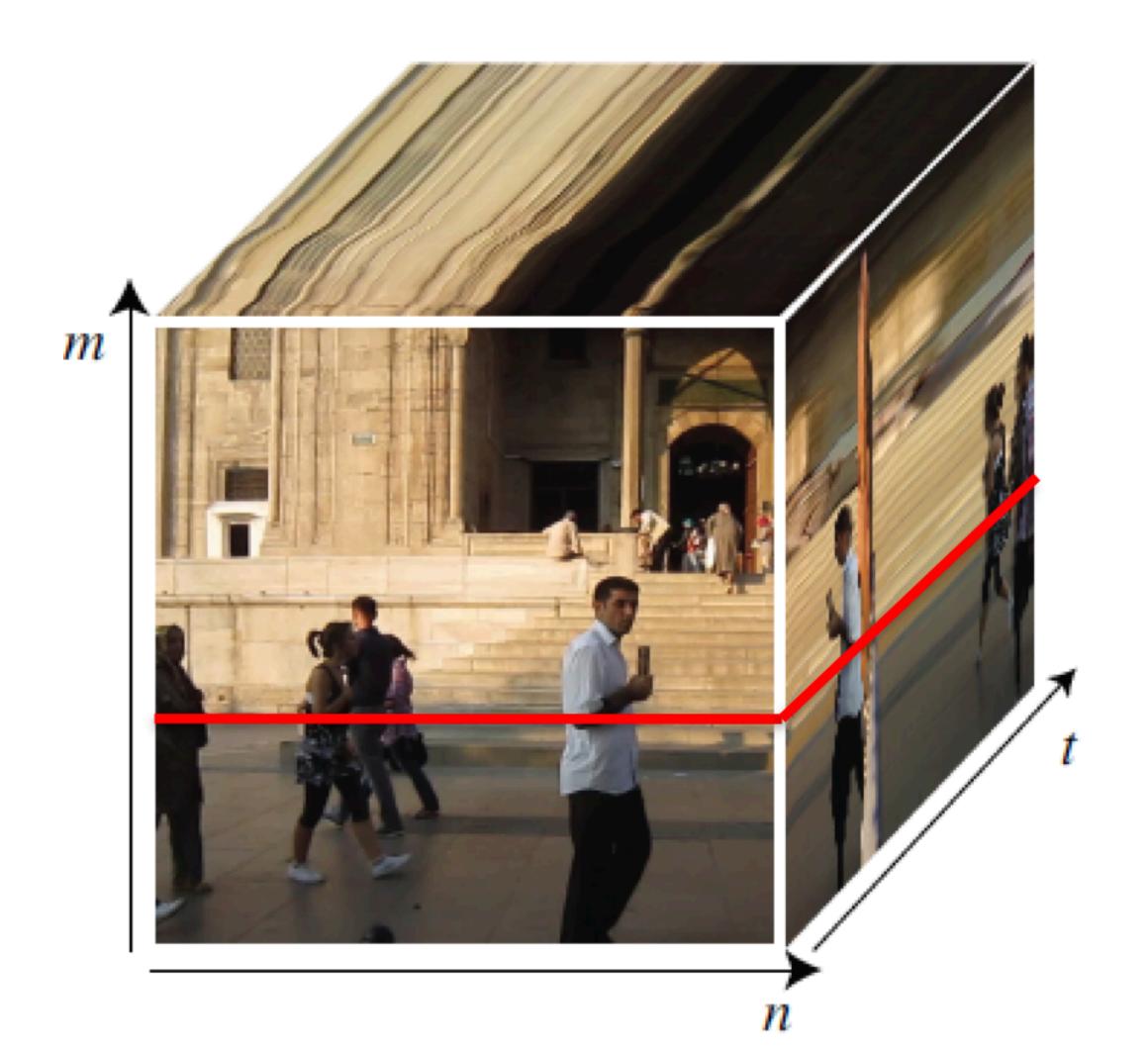


# How do we model sequences?

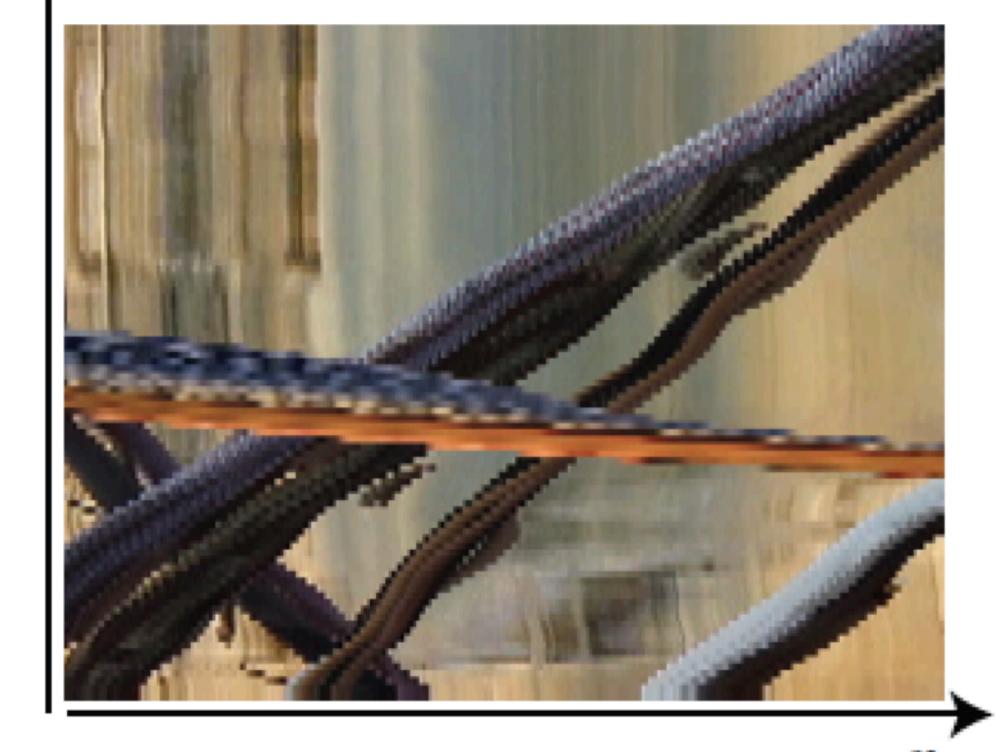




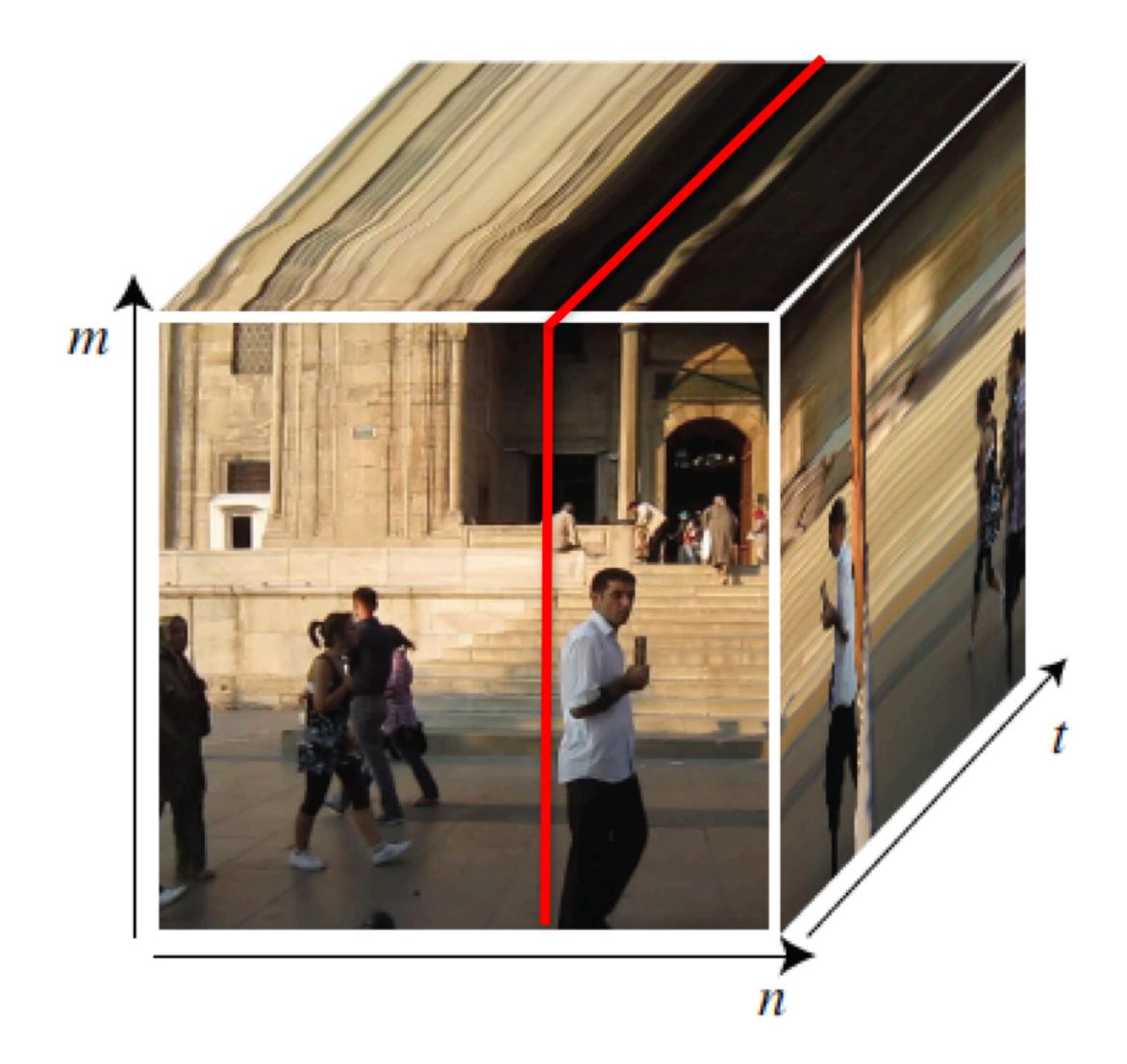




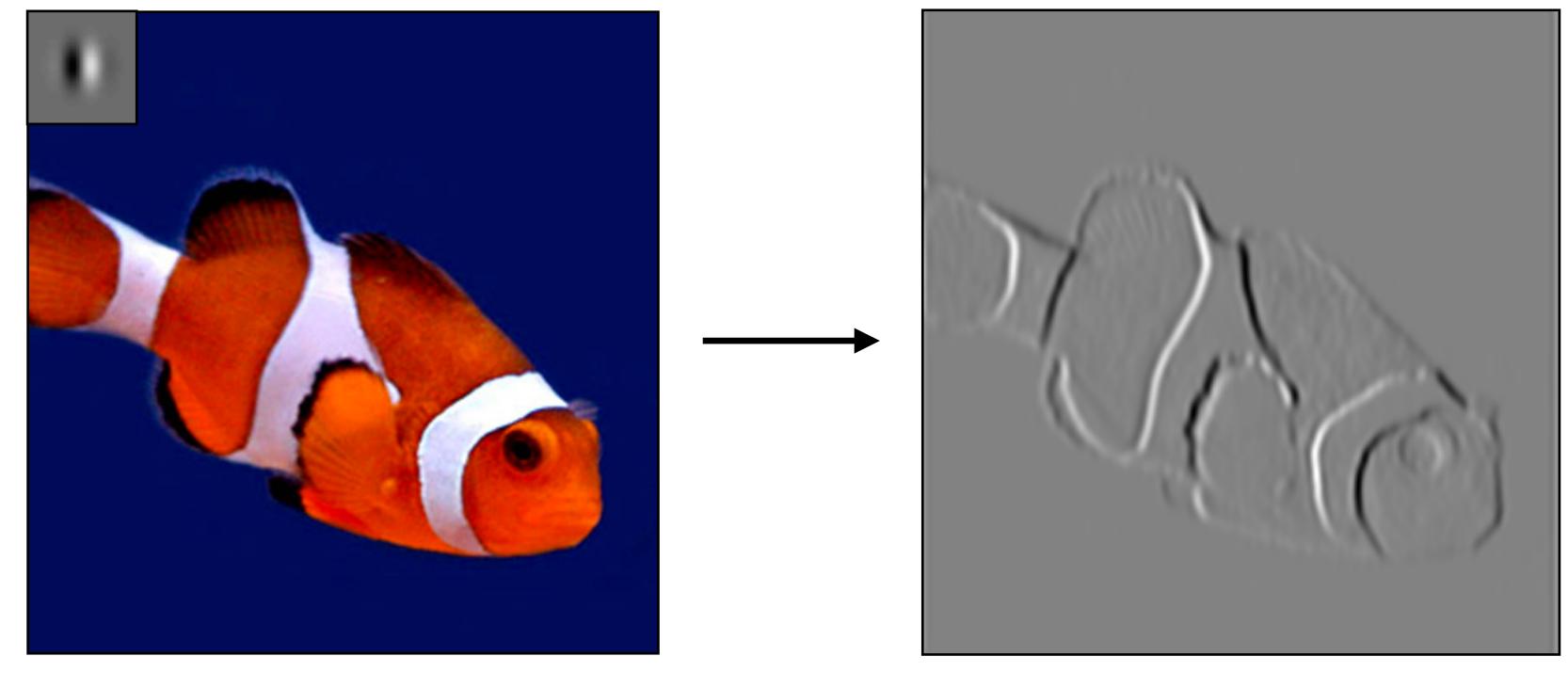




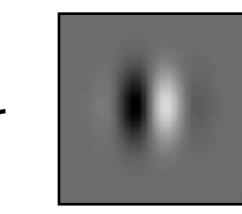
n



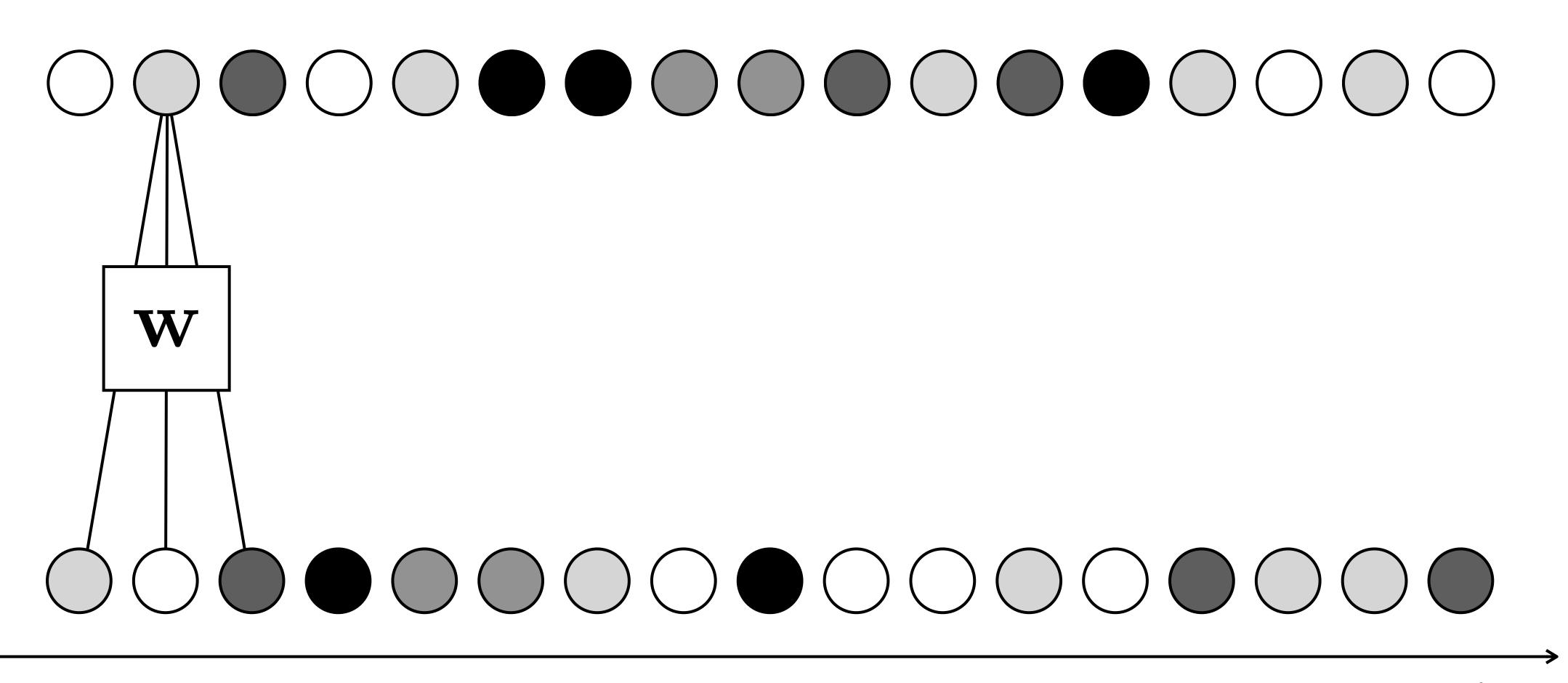


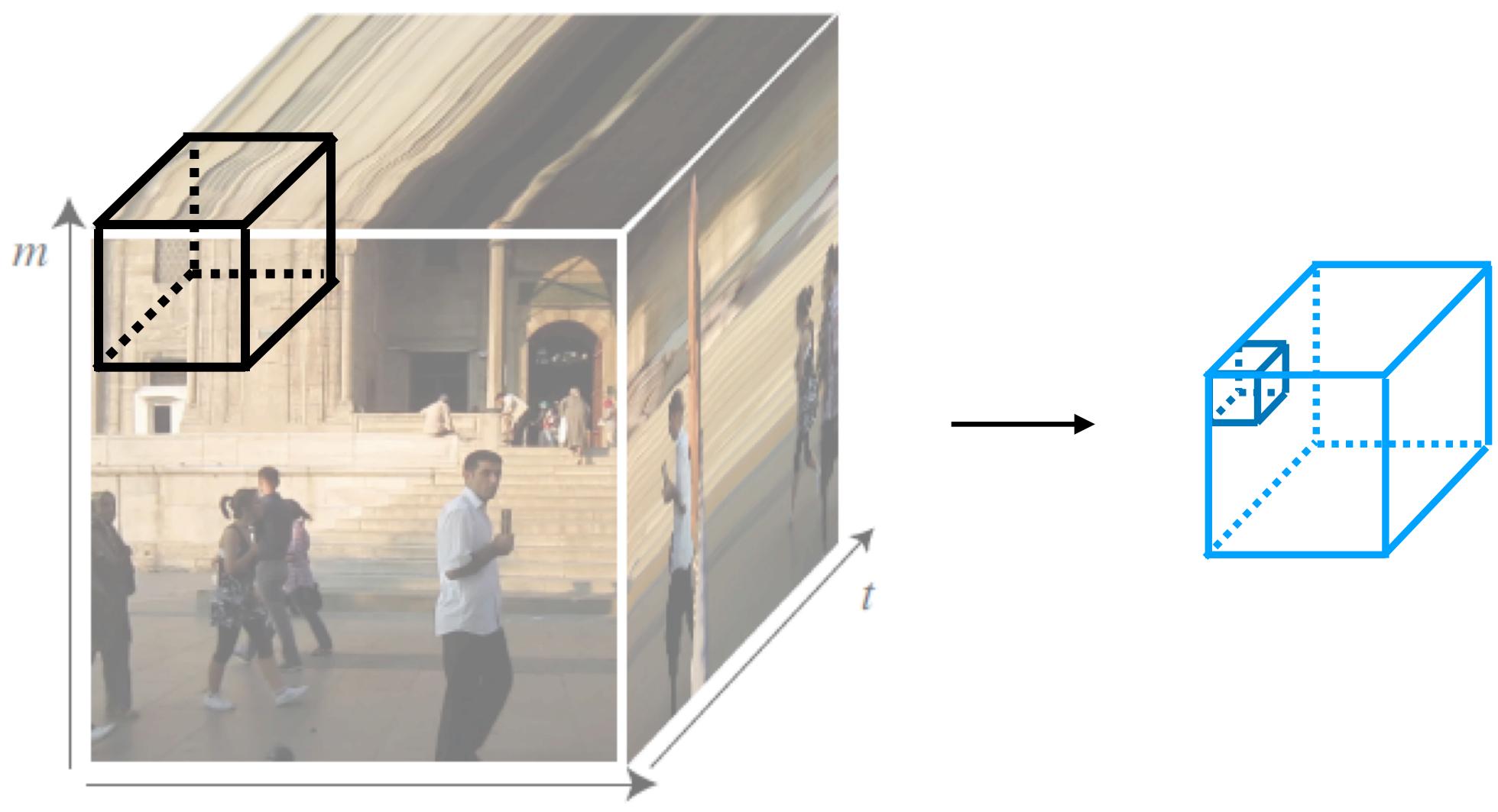


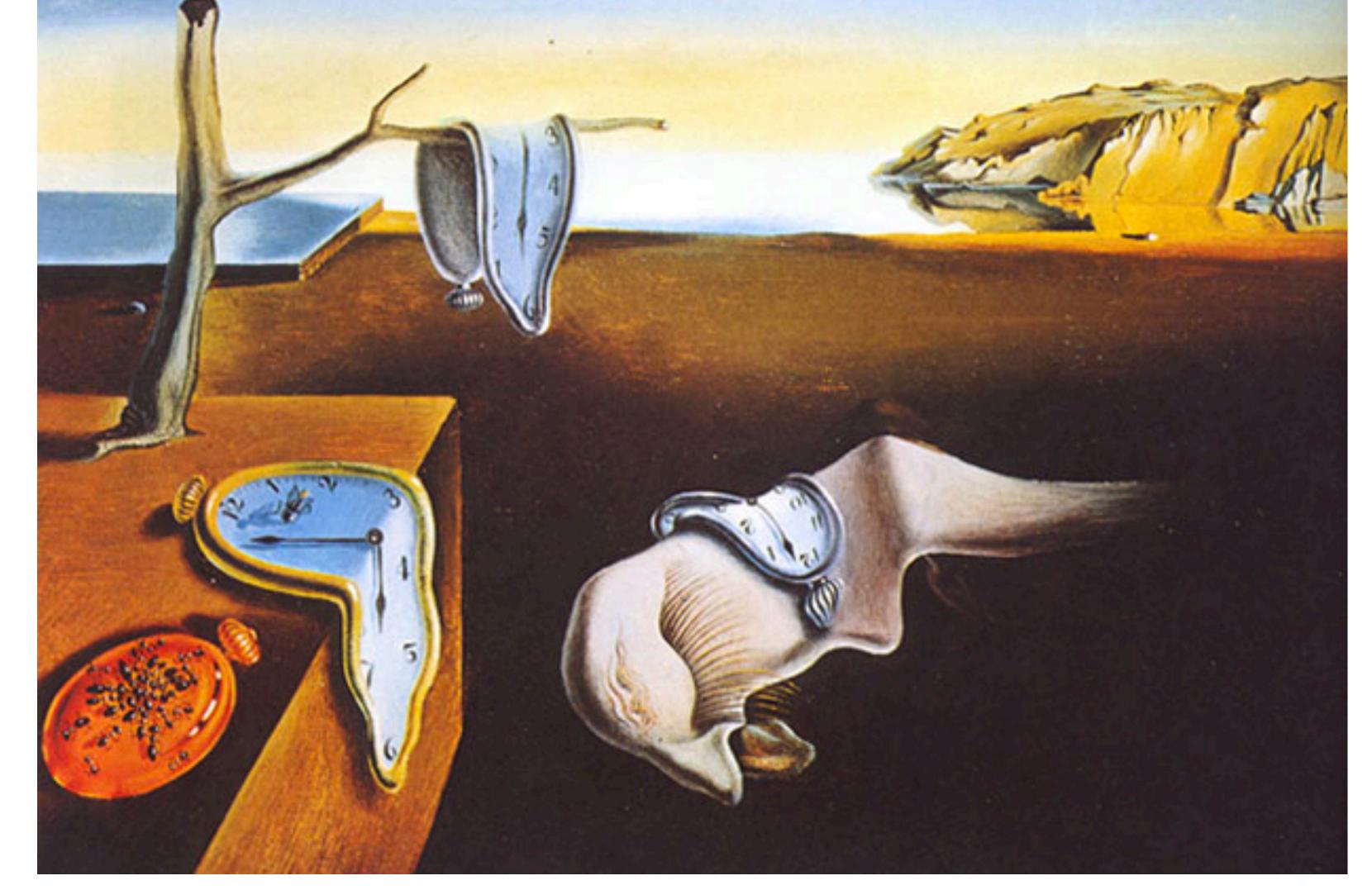
filter



#### Convolutions in time



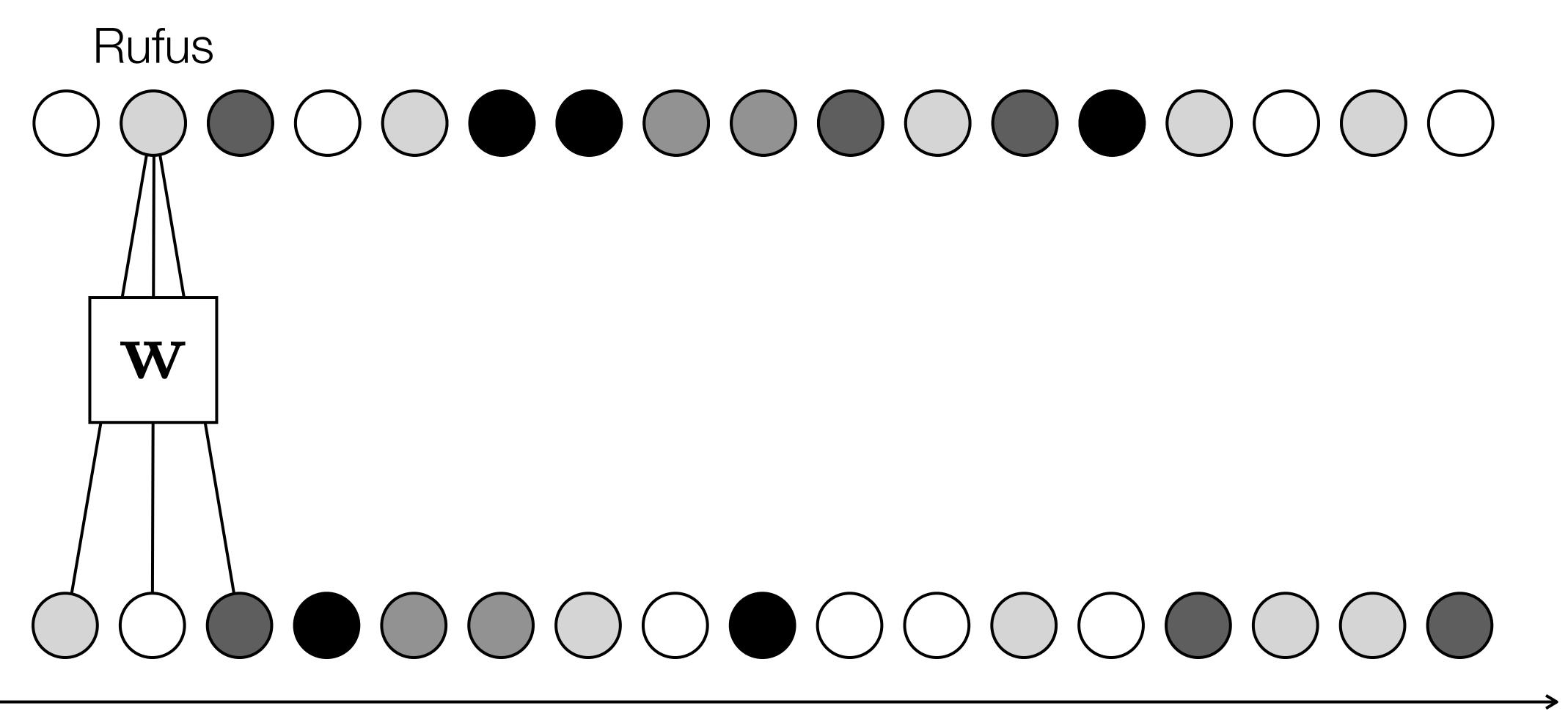




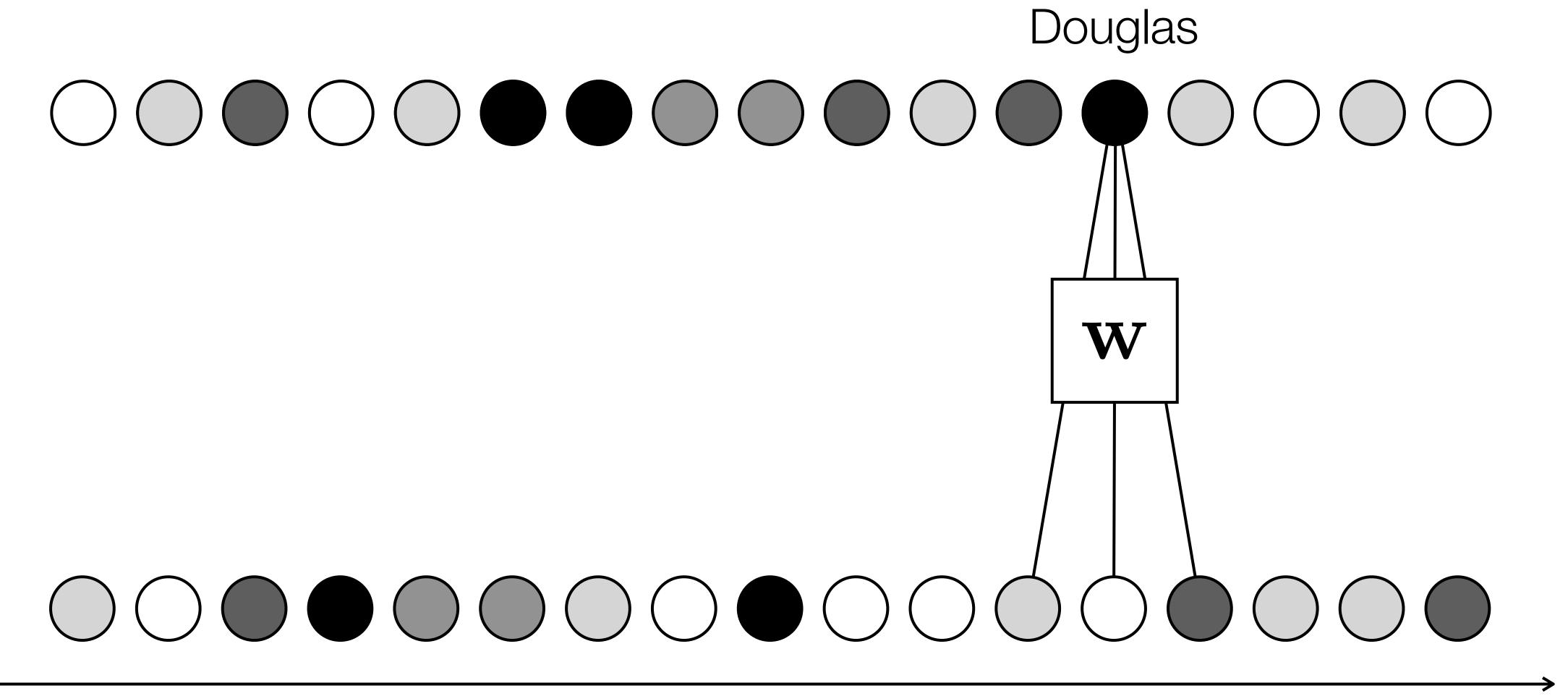
"The Persistence of Memory", Dali 1931

It bothered him that the dog at three fourteen (seen from the side) should have the same name as the dog at three fifteen (seen from the front).

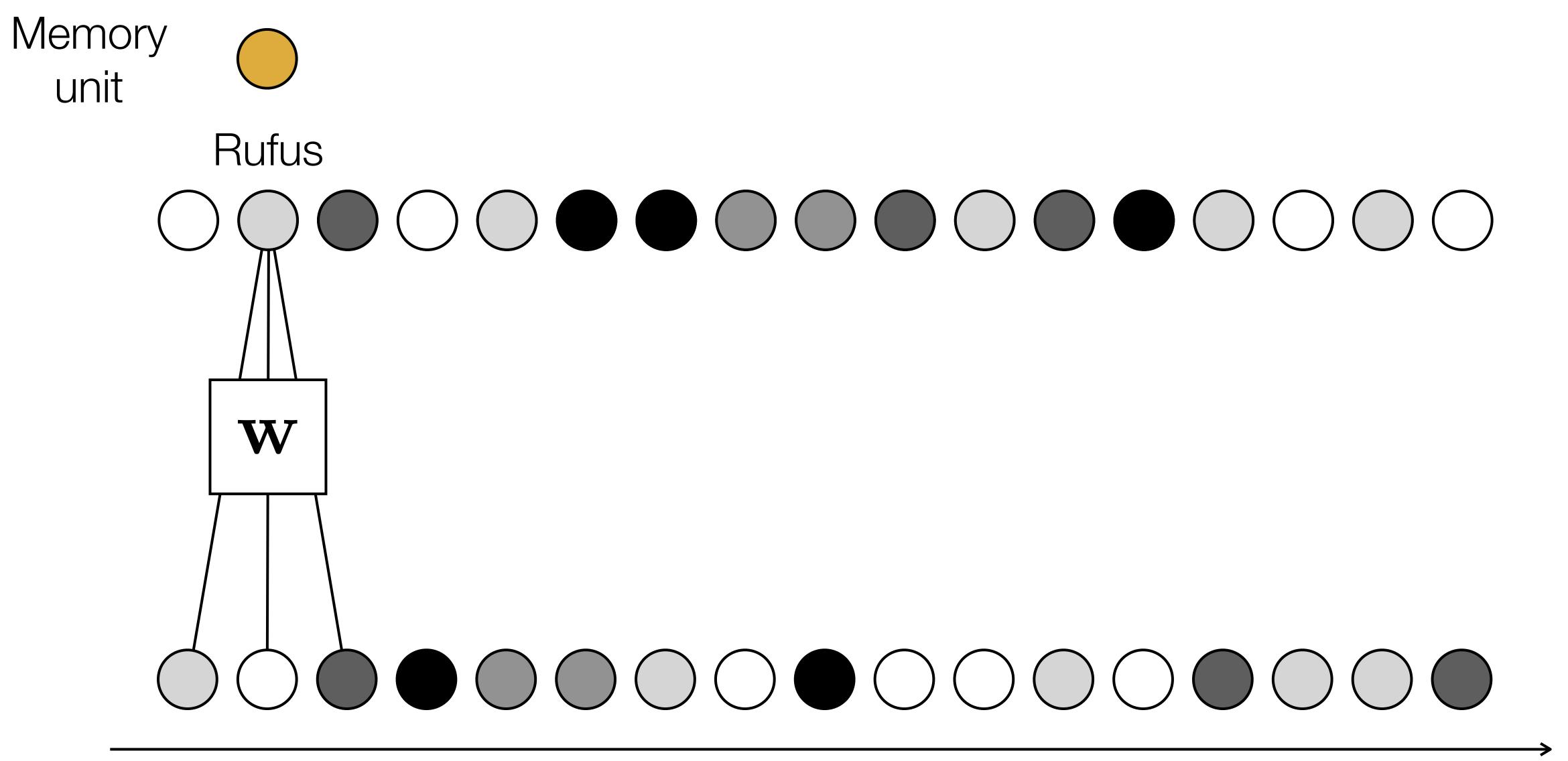
— "Funes the Memorius", Borges 1962



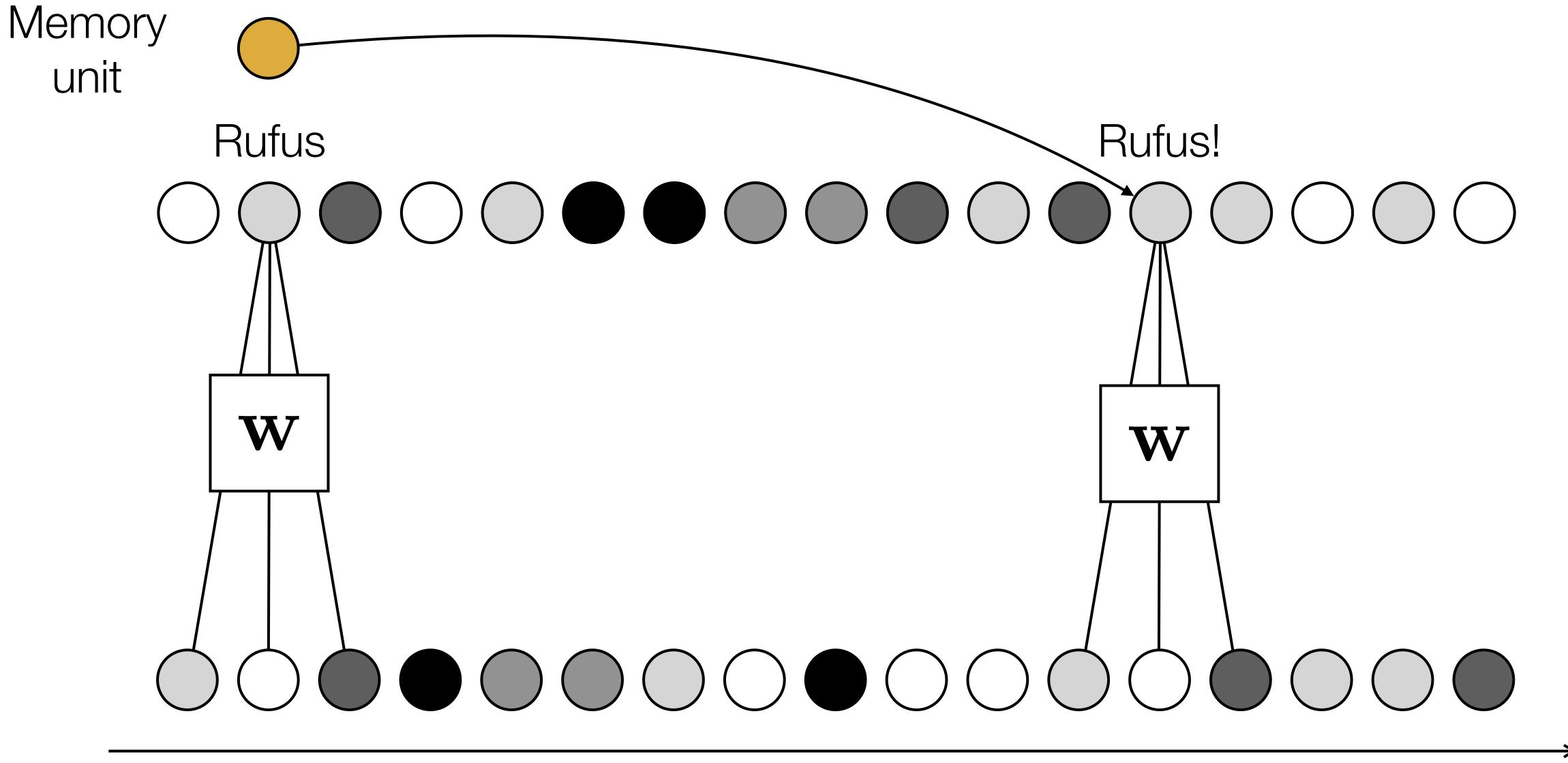




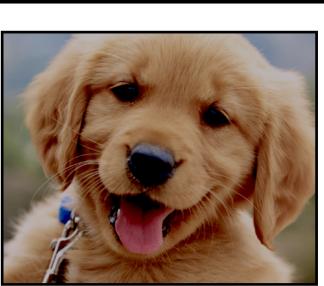


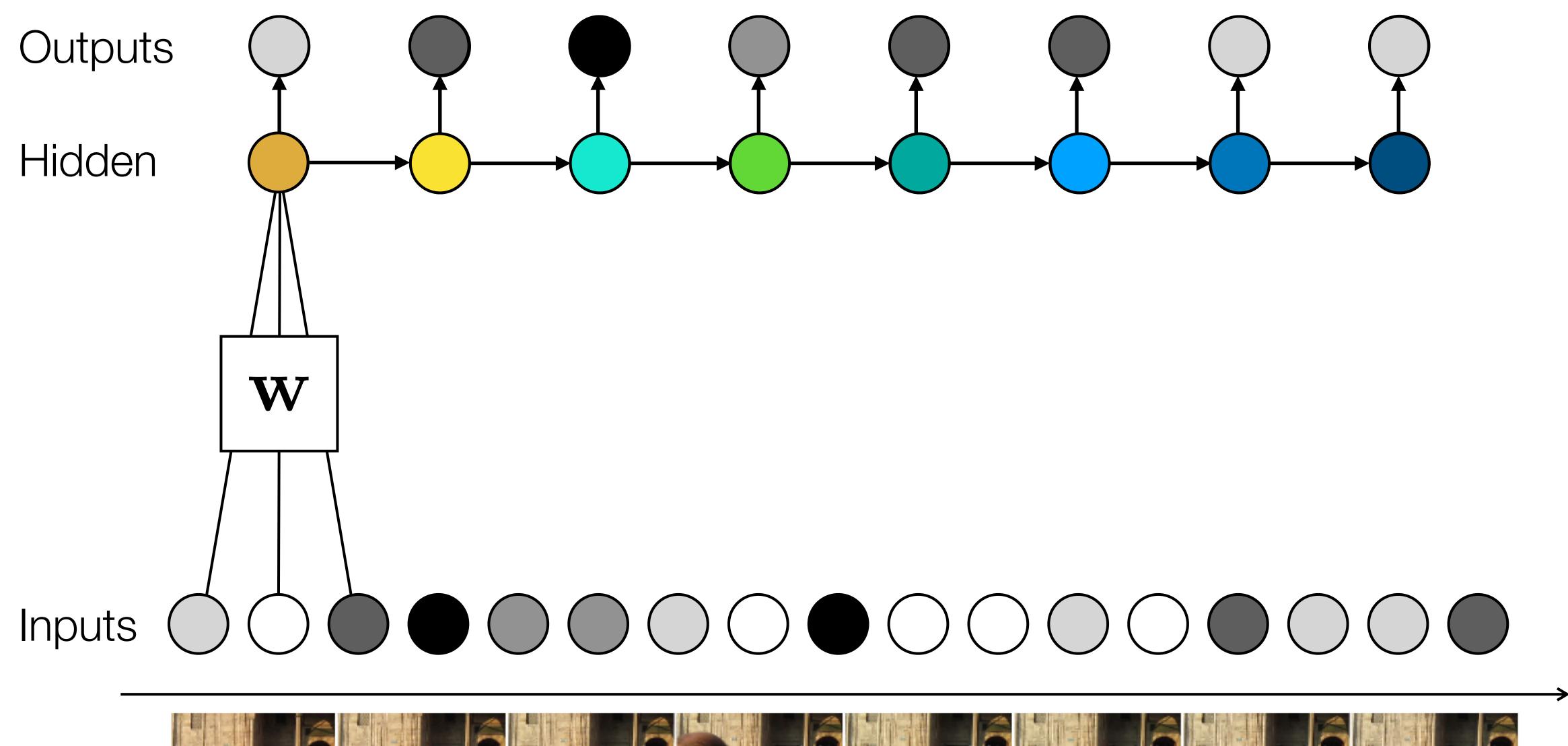




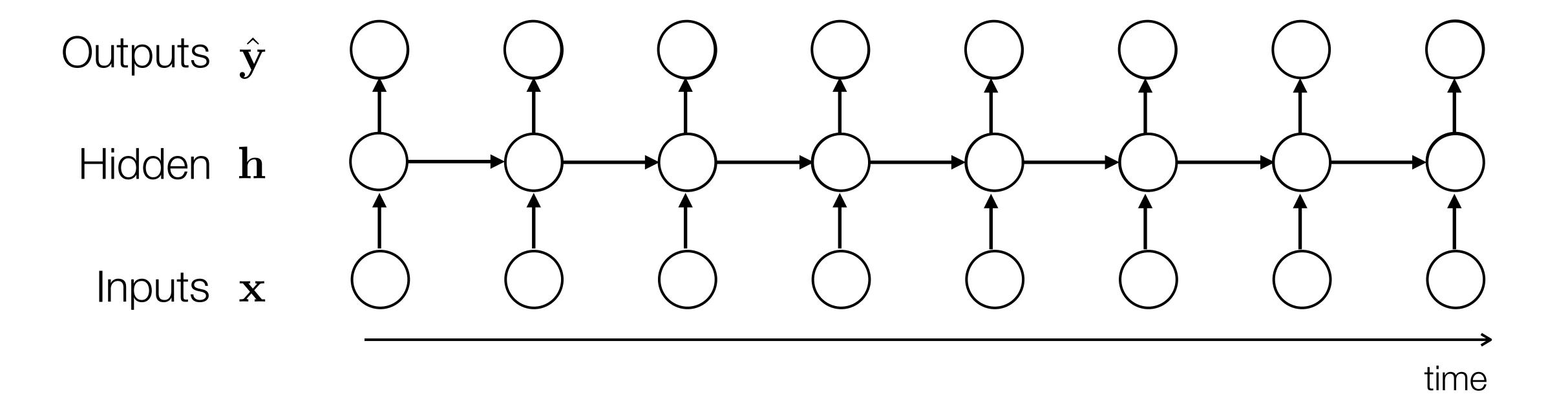


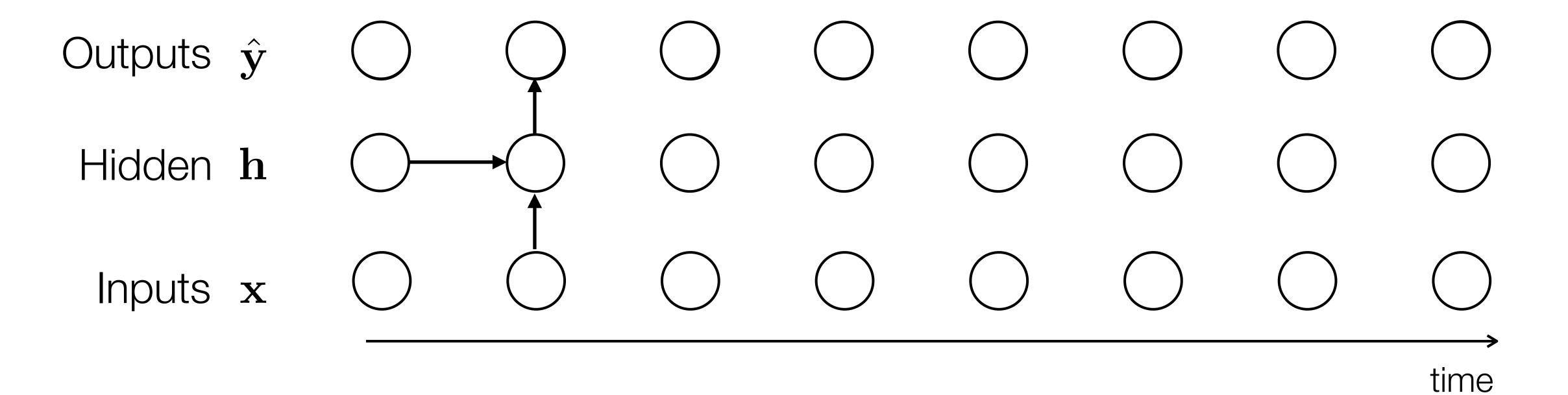




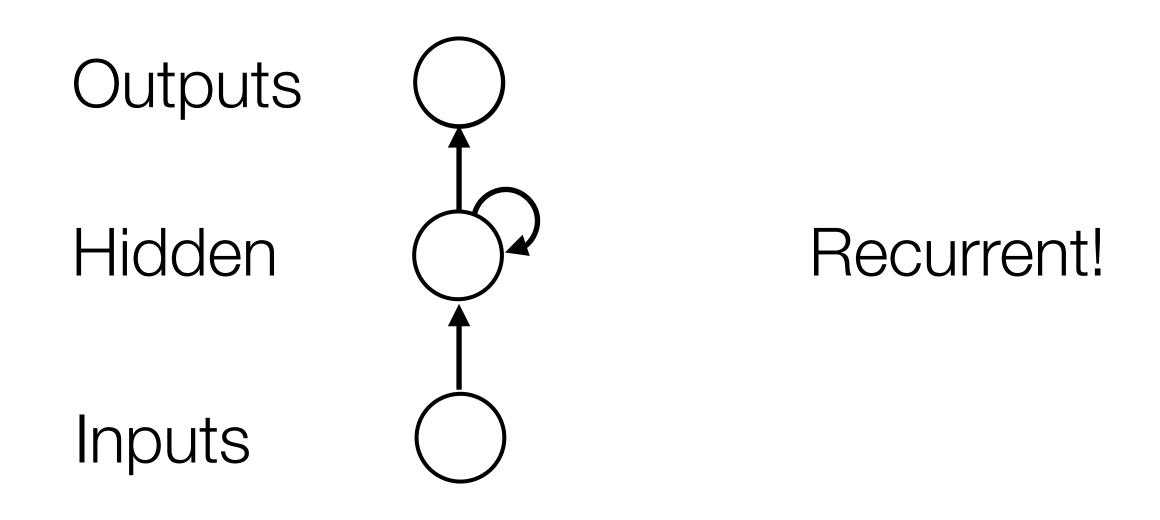




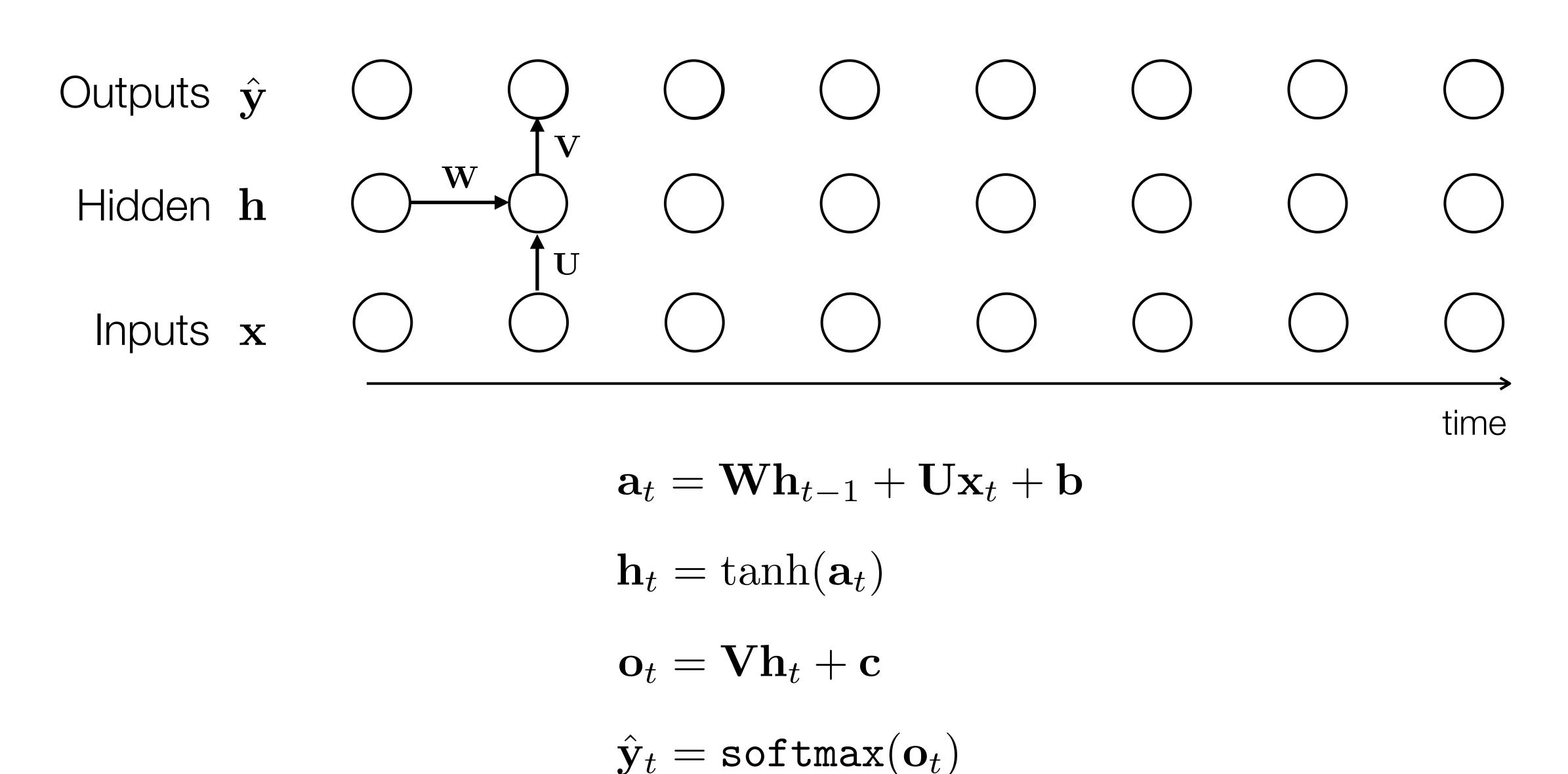


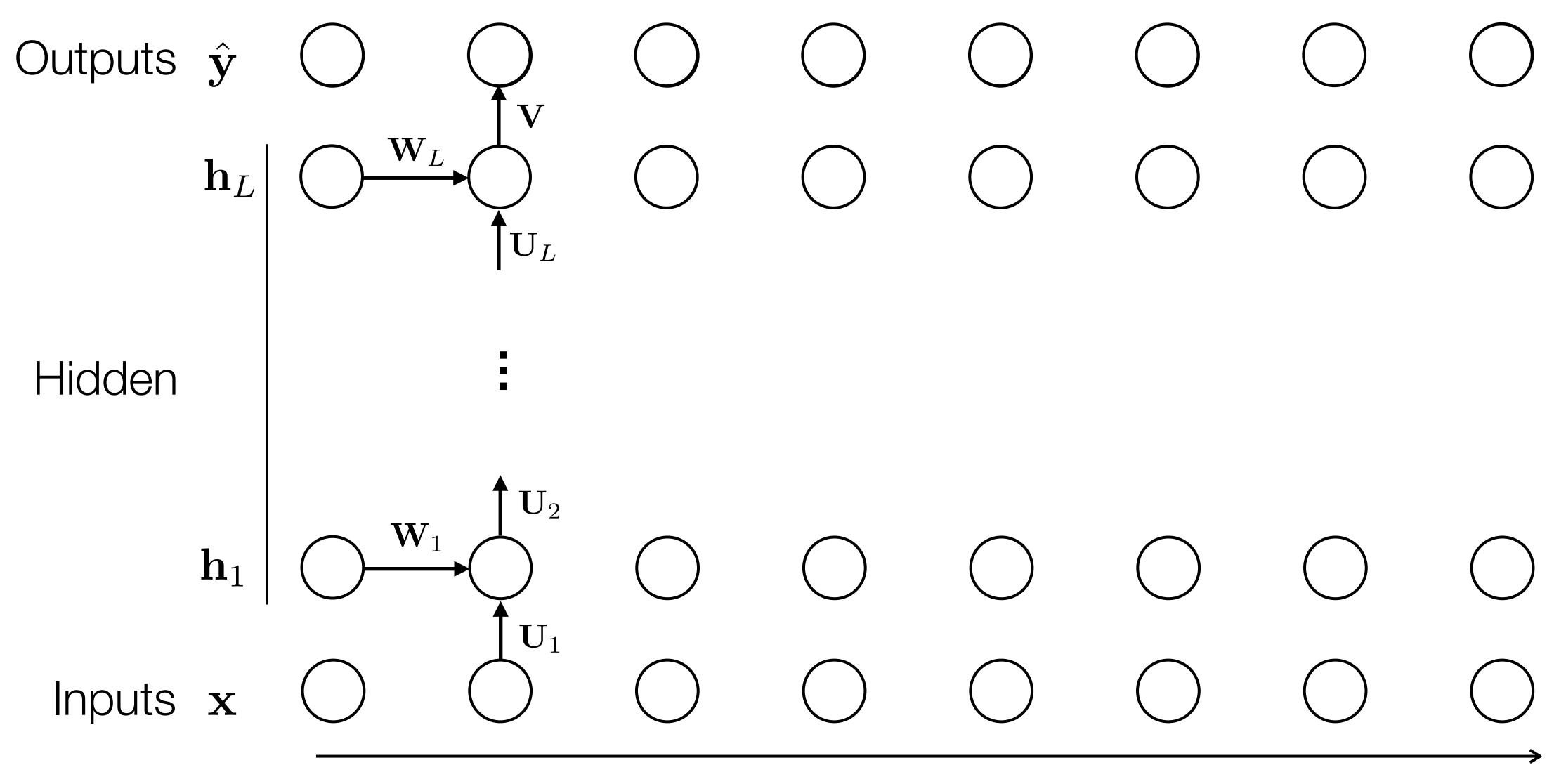


$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$
 $\mathbf{y}_t = g(\mathbf{h}_t)$ 

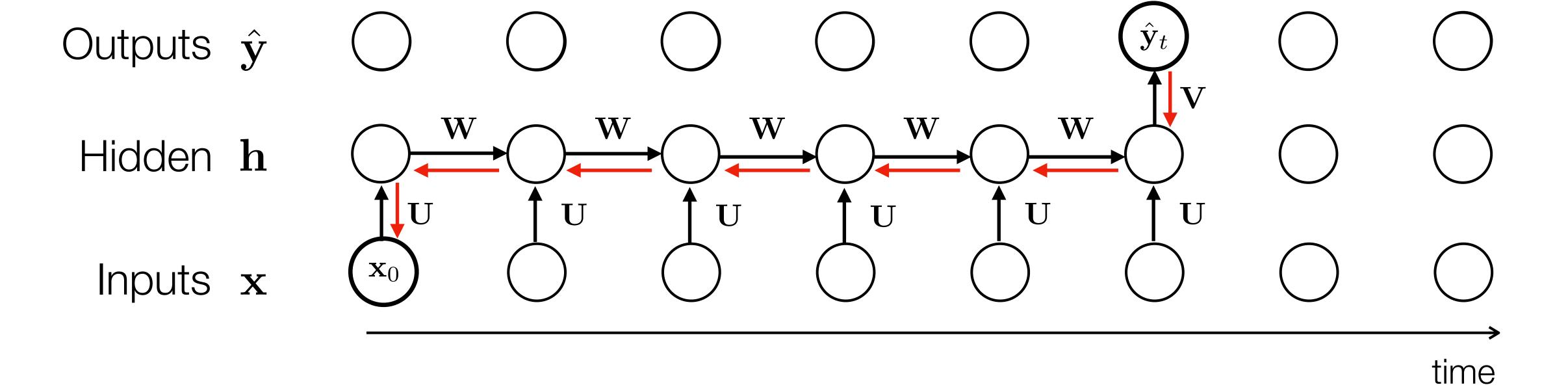


$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$
 $\mathbf{y}_t = g(\mathbf{h}_t)$ 

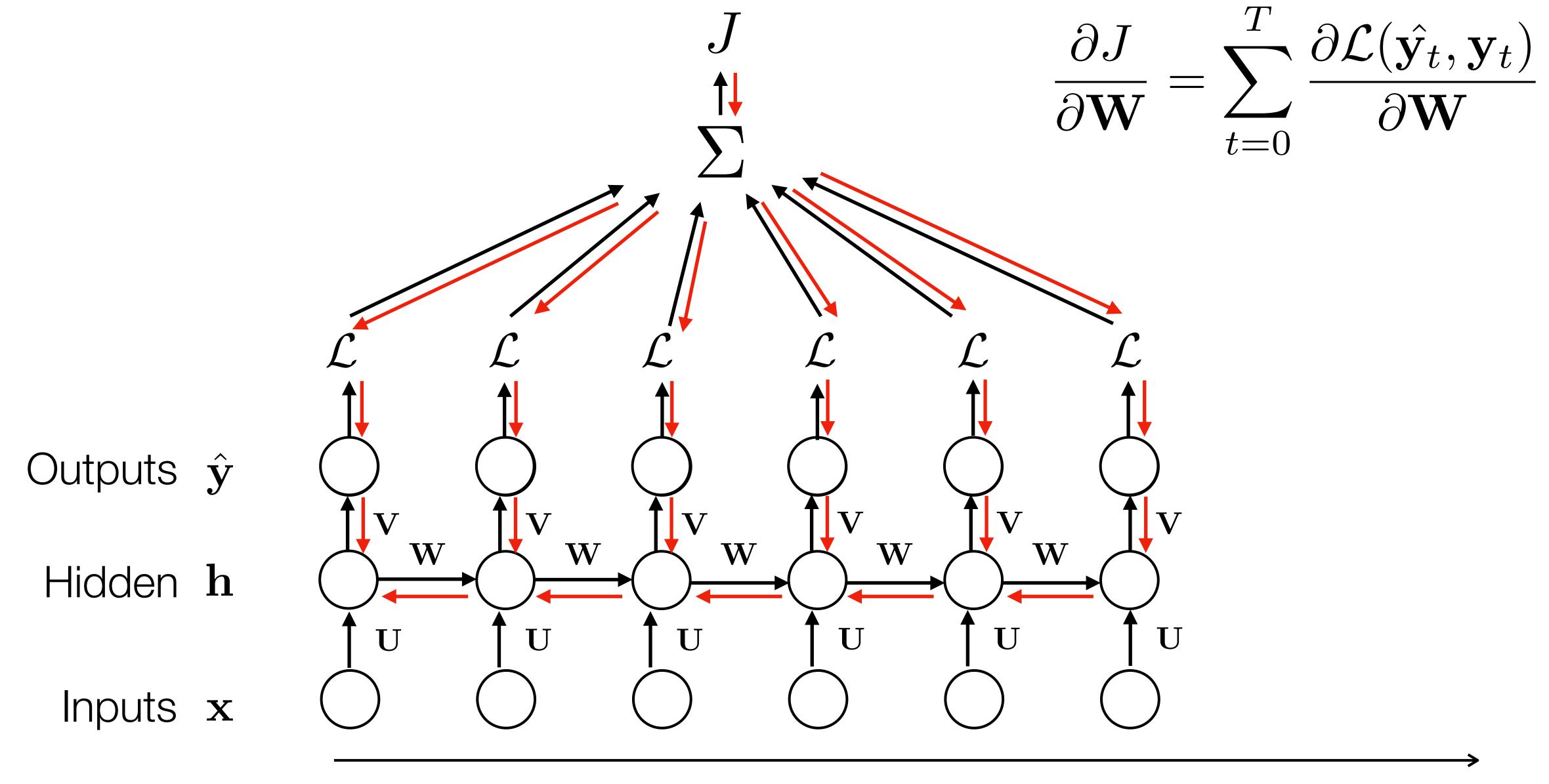




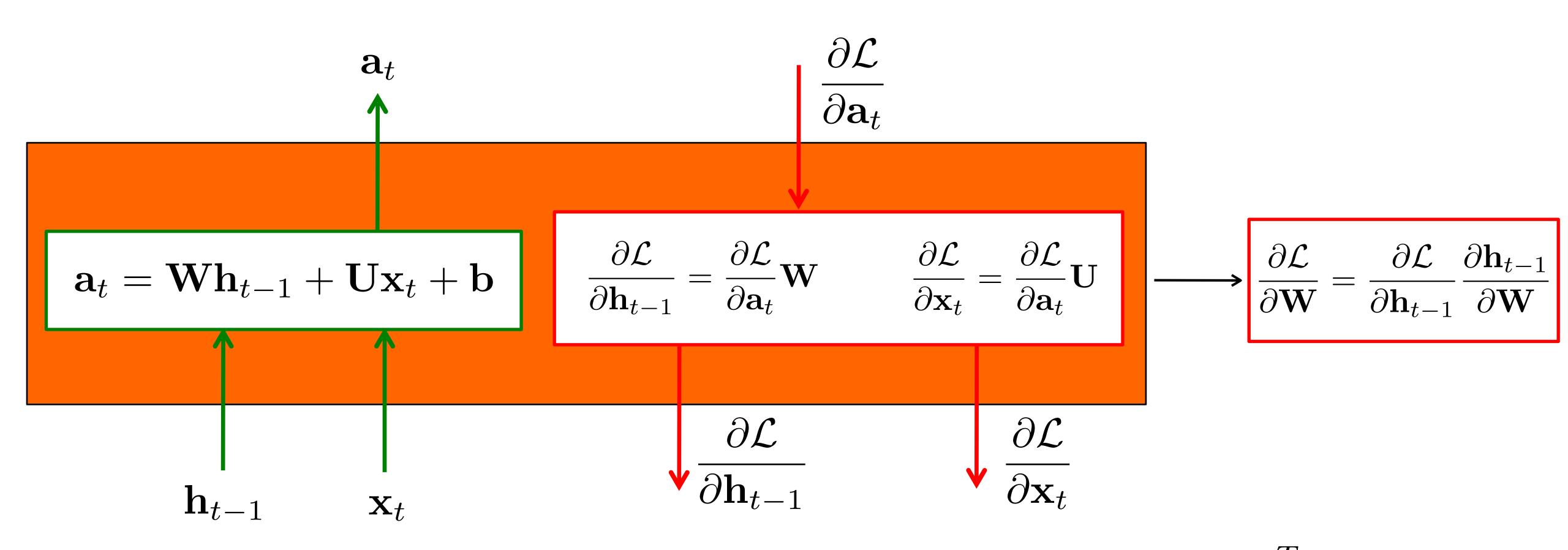
### Backprop through time



$$\frac{\partial \hat{\mathbf{y}}_t}{\partial \mathbf{x}_0} = \frac{\partial \hat{\mathbf{y}}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_{t-1}} \cdots \frac{\partial \mathbf{h}_1}{\partial \mathbf{h}_0} \frac{\partial \mathbf{h}_0}{\partial \mathbf{x}_0}$$



# Recurrent linear layer



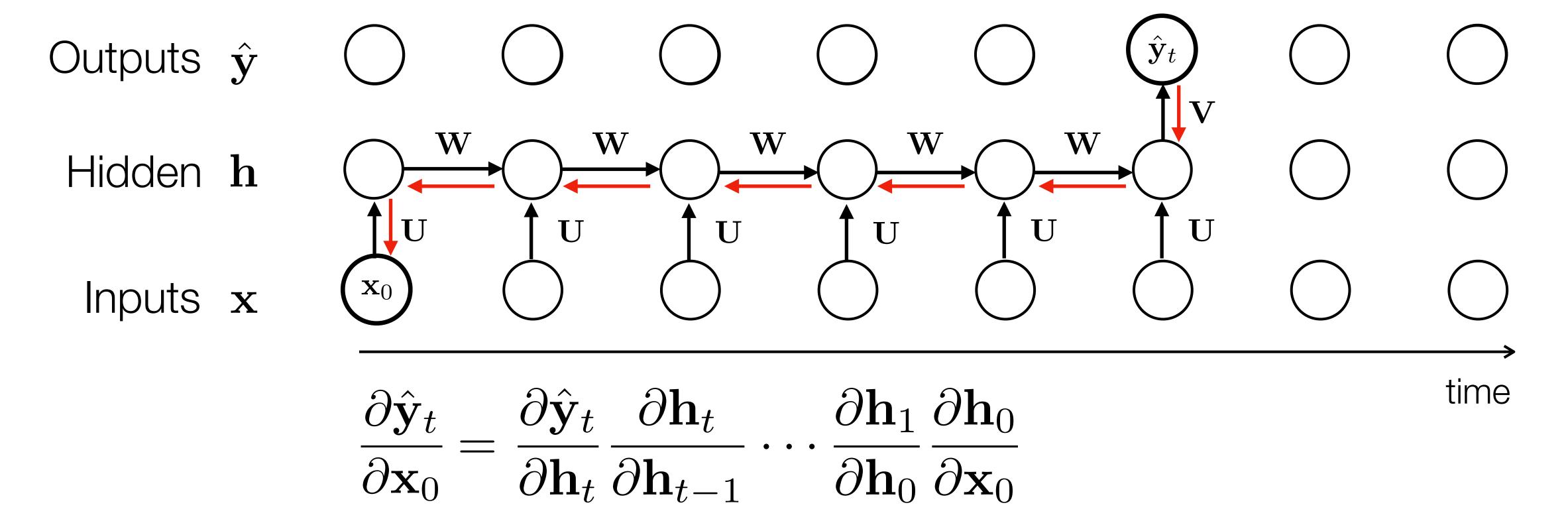
$$rac{\partial J}{\partial \mathbf{W}} = \sum_{t=0}^{T} rac{\partial \mathcal{L}(\hat{\mathbf{y}_t}, \mathbf{y}_t)}{\partial \mathbf{W}}$$

### The problem of long-range dependences

#### Why not remember everything?

- Memory size grows with t
- This kind of memory is **nonparametric**: there is no finite set of parameters we can use to model it
- RNNs make a Markov assumption the future hidden state only depends on the immediately preceding hidden state
- By putting the right info in to the hidden state, RNNs can model depedences that are arbitrarily far apart

# The problem of long-range dependences



- Capturing long-range dependences requires propagating information through a long chain of dependences.
- Old observations are forgotten
- Stochastic gradients become high variance (noisy), and gradients may vanish or explode

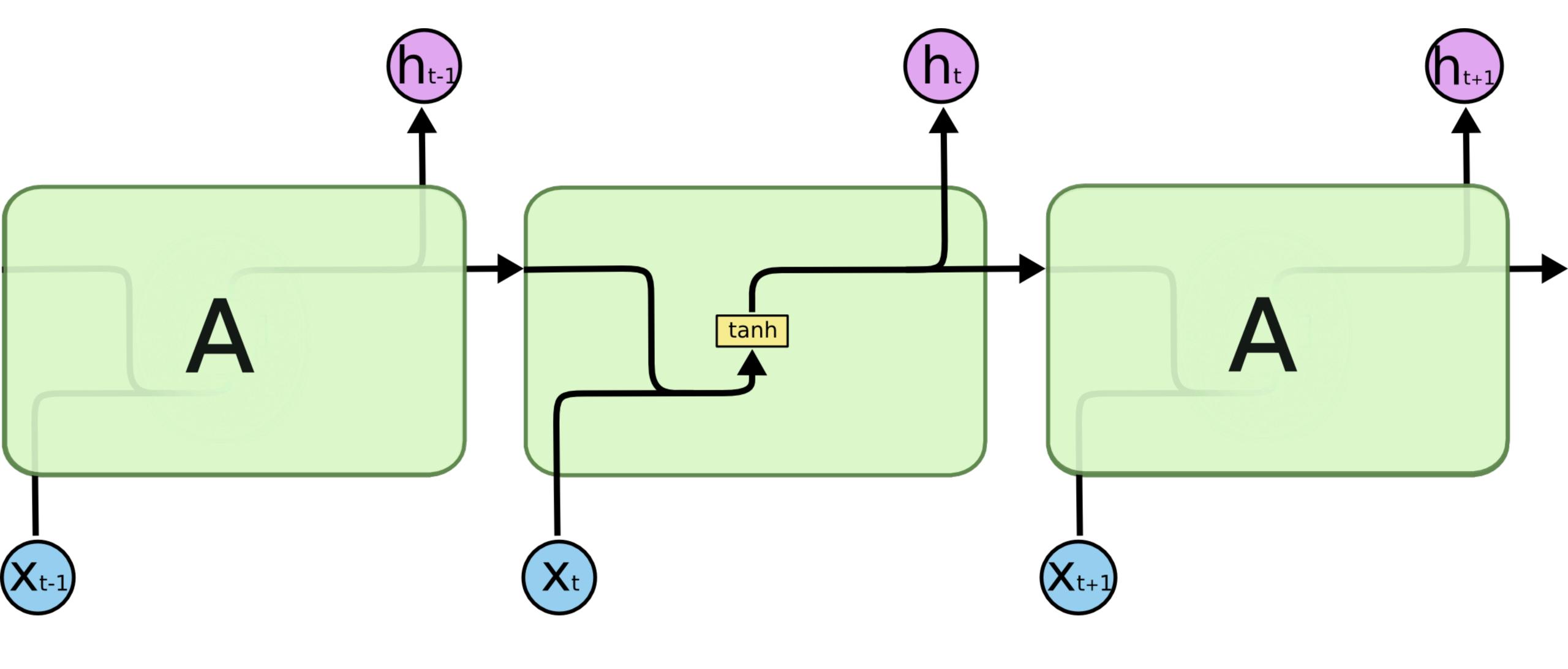
#### LSTMs

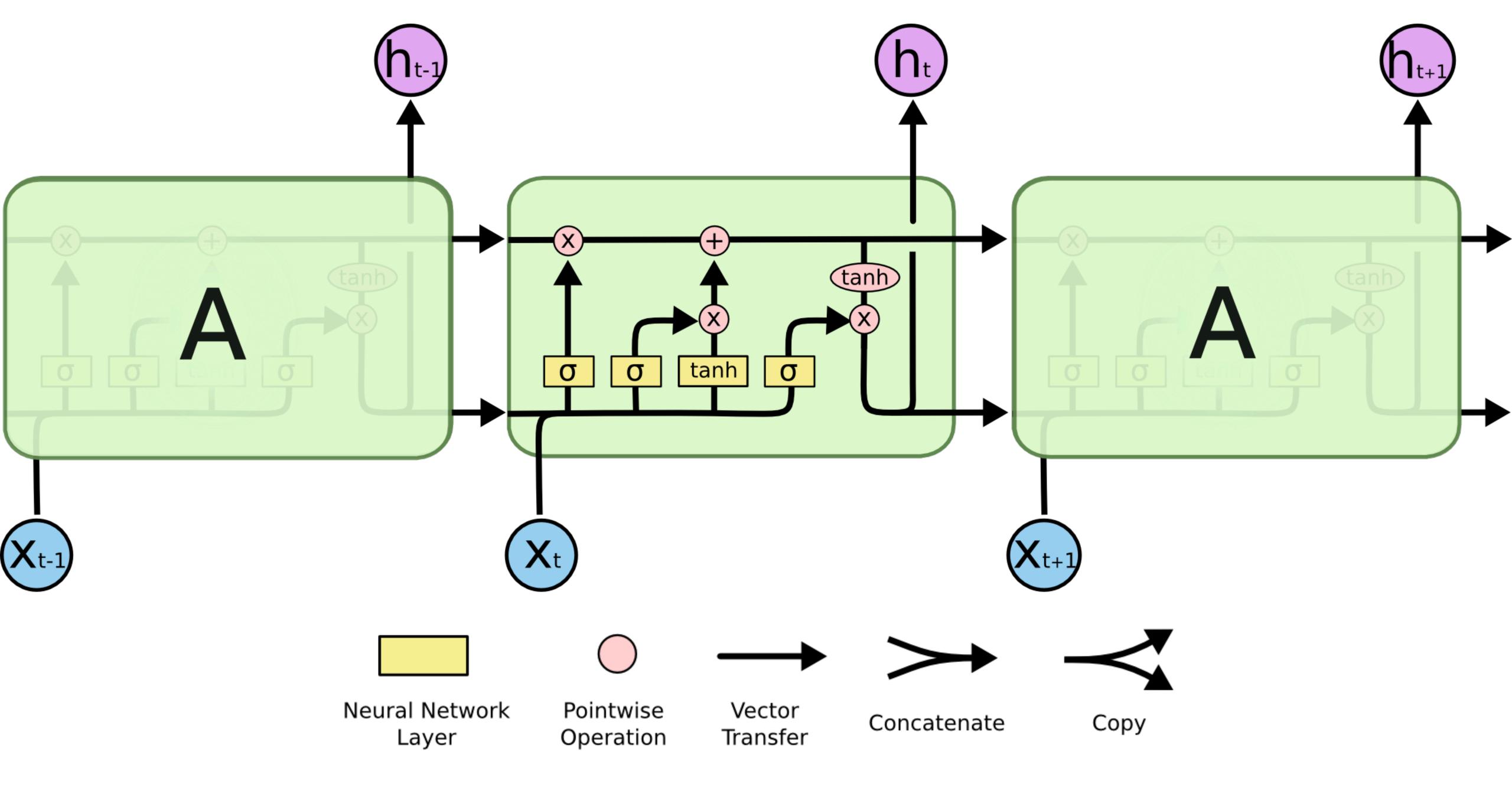
Long Short Term Memory

[Hochreiter & Schmidhuber, 1997]

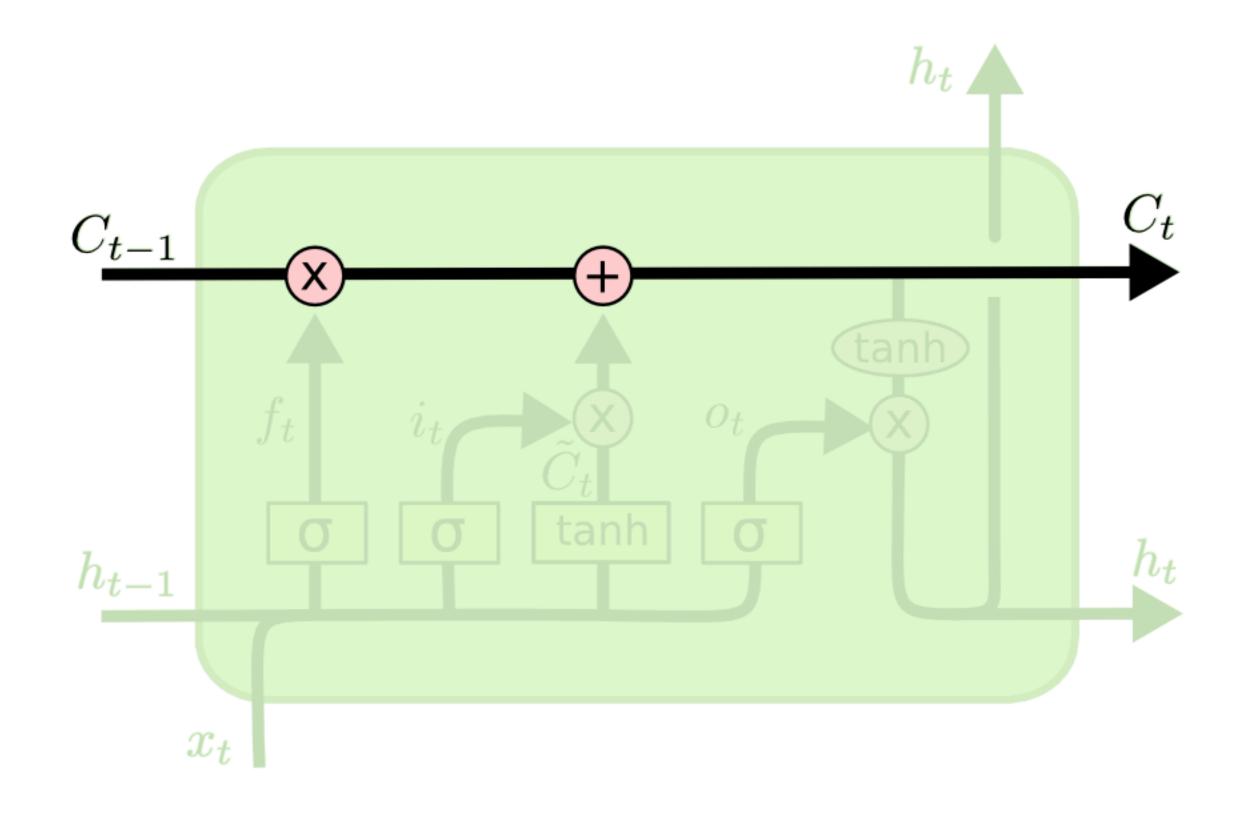
A special kind of RNN designed to avoid forgetting.

This way the default behavior is not to forget an old state. Instead of forgetting by default, the network has to *learn to forget*.

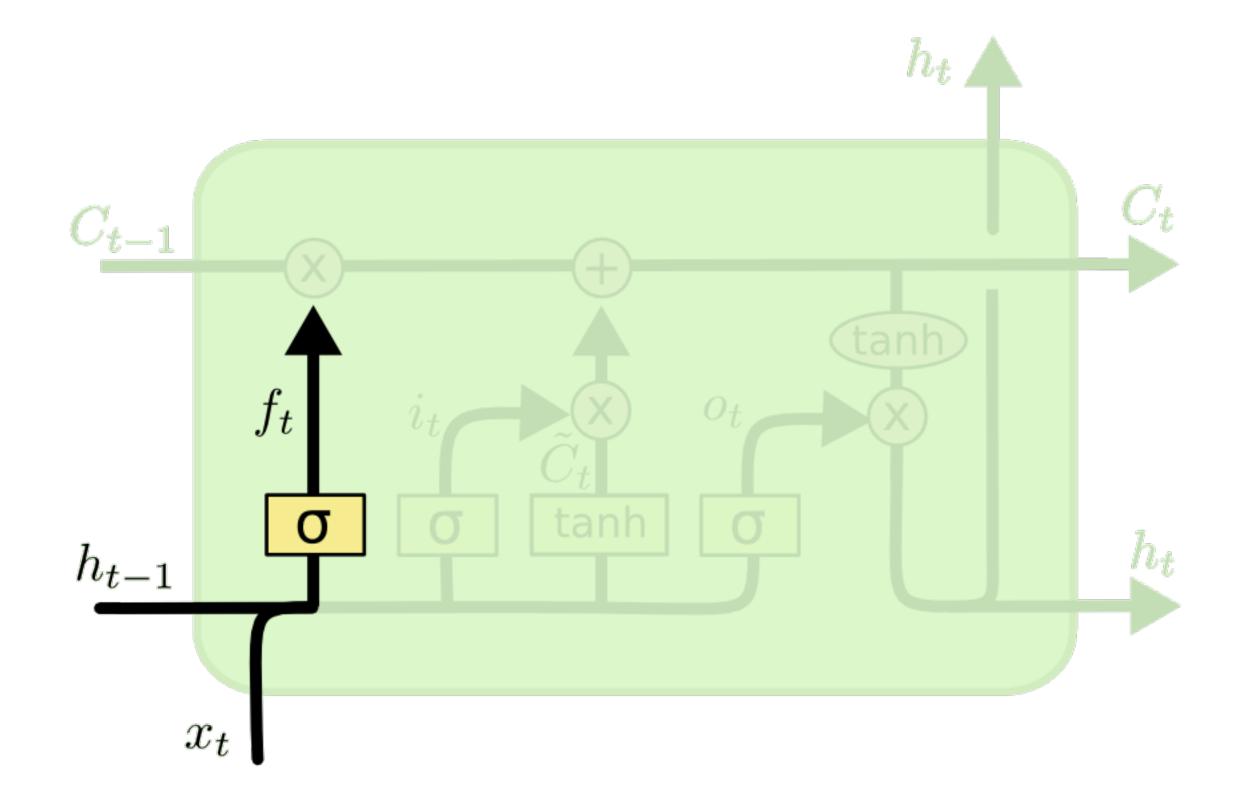


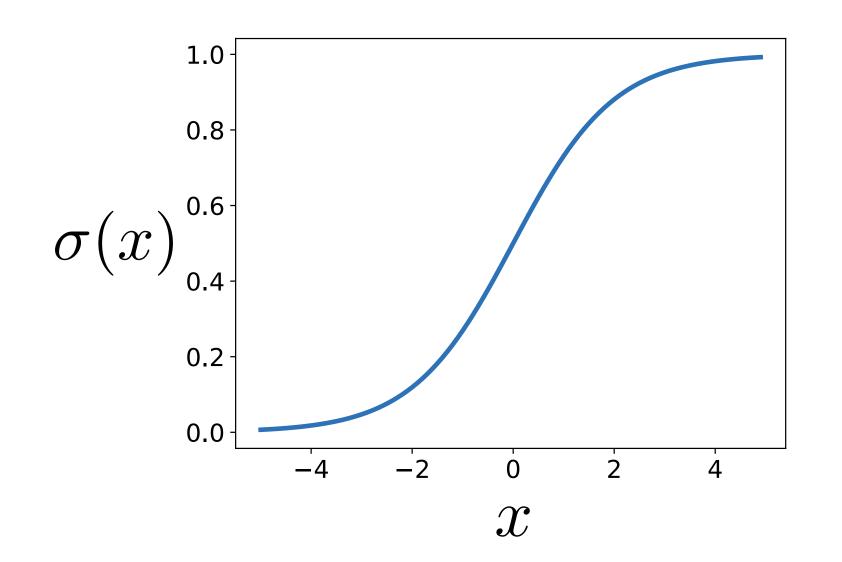


[Slide derived from Chris Olah: <a href="http://colah.github.io/posts/2015-08-Understanding-LSTMs/">http://colah.github.io/posts/2015-08-Understanding-LSTMs/</a>]



C<sub>t</sub> = Cell state

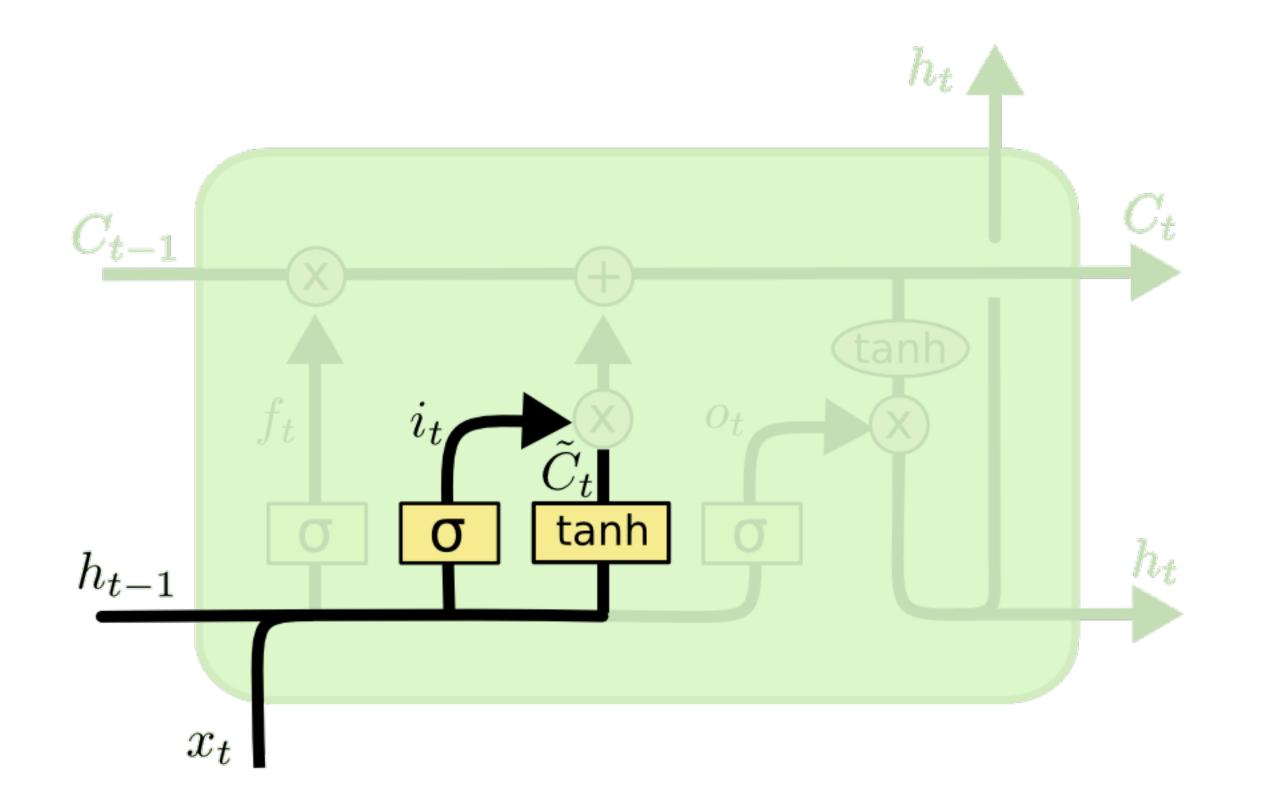




$$f_t = \sigma \left( W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Decide what information to throw away from the cell state.

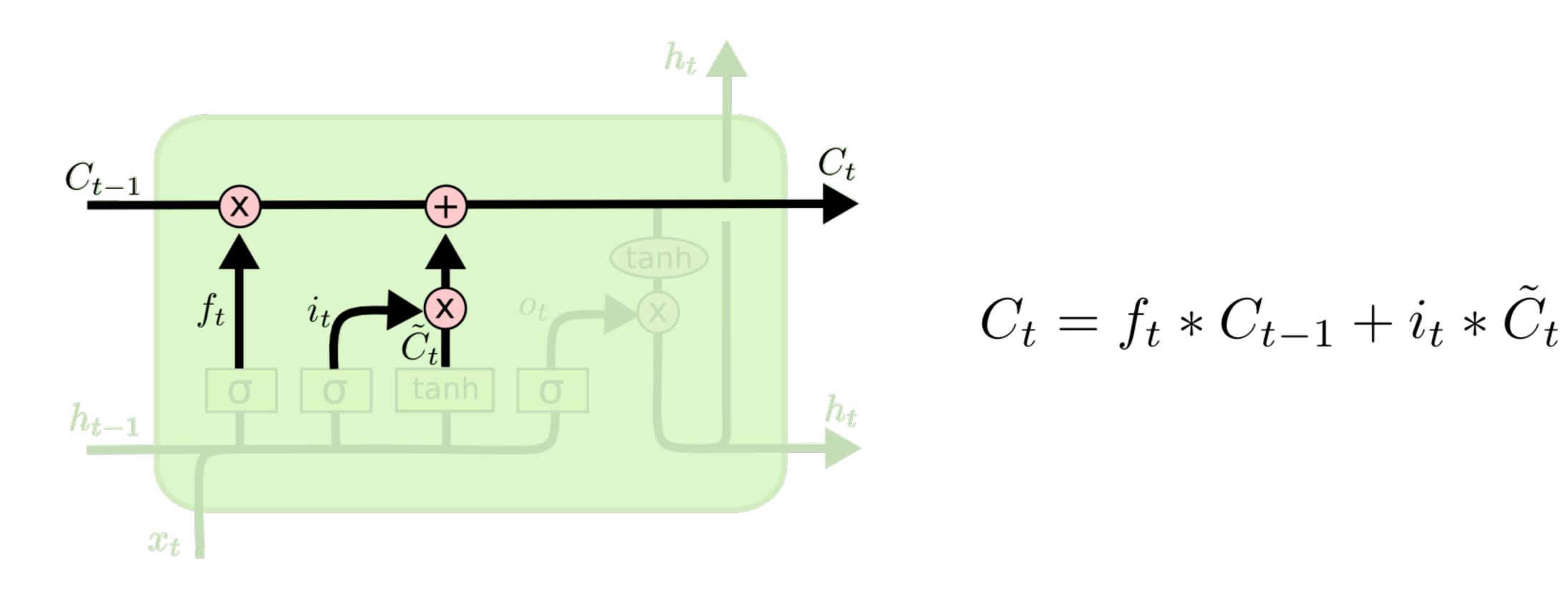
Each element of cell state is multiplied by ~1 (remember) or ~0 (forget).



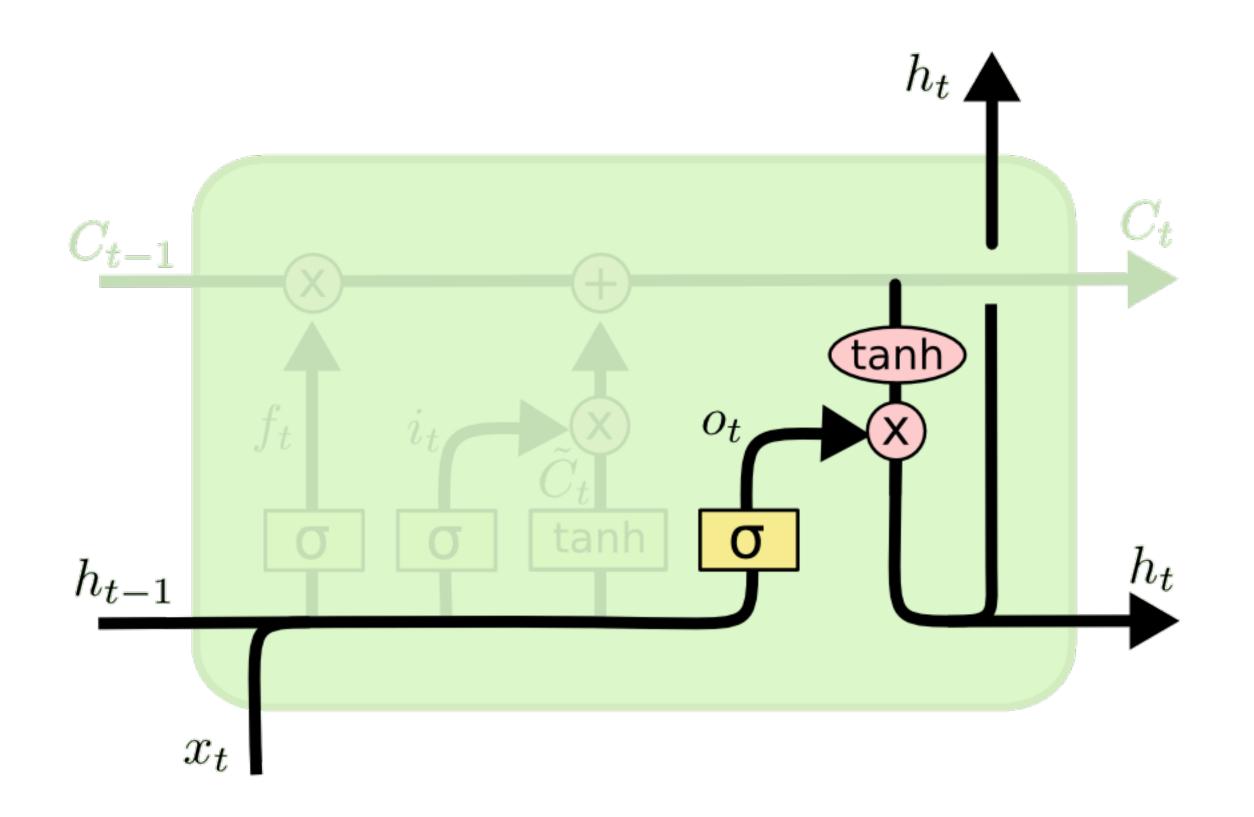
which indices to write to

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$
 
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$
 what to write to those indices

Decide what new information to add to the cell state.



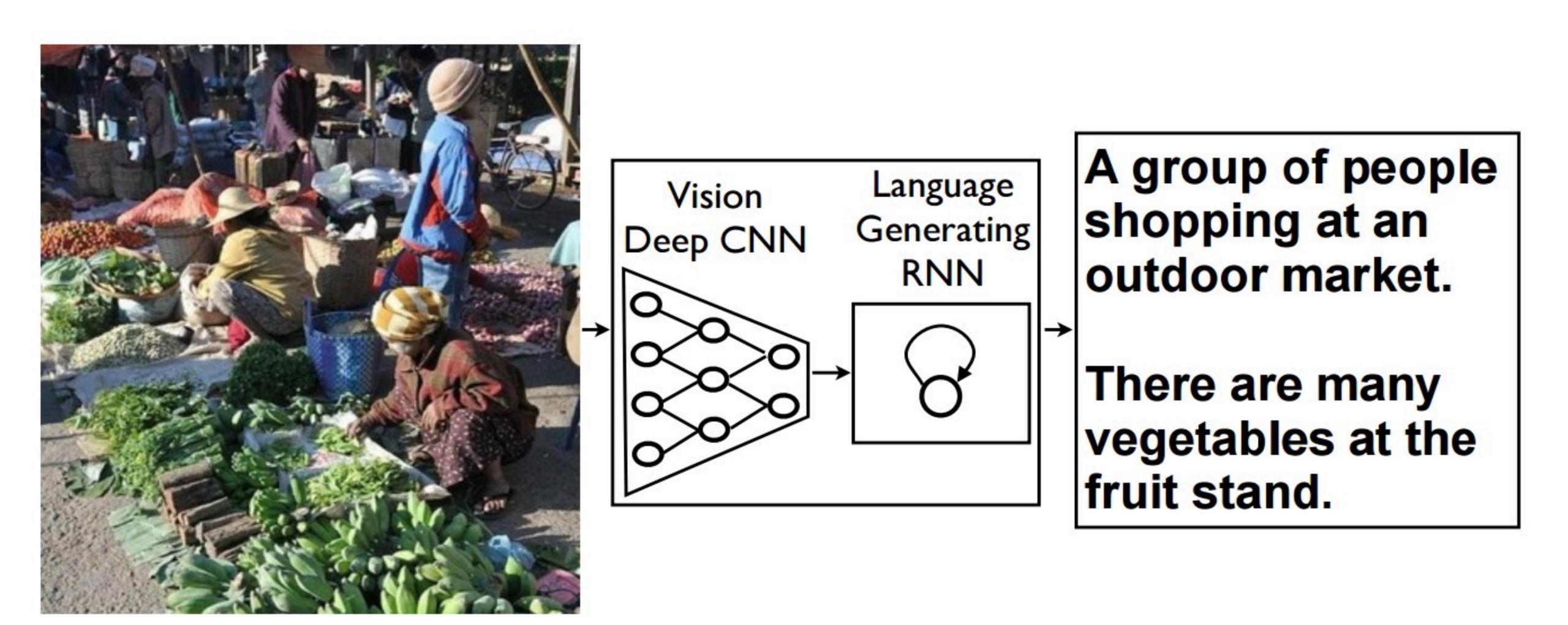
Forget selected old information, write selected new information.



$$o_t = \sigma \left( W_o \left[ h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left( C_t \right)$$

After having updated the cell state's information, decide what to output.

# Image Captioning



## Recipe for deep learning in a new domain

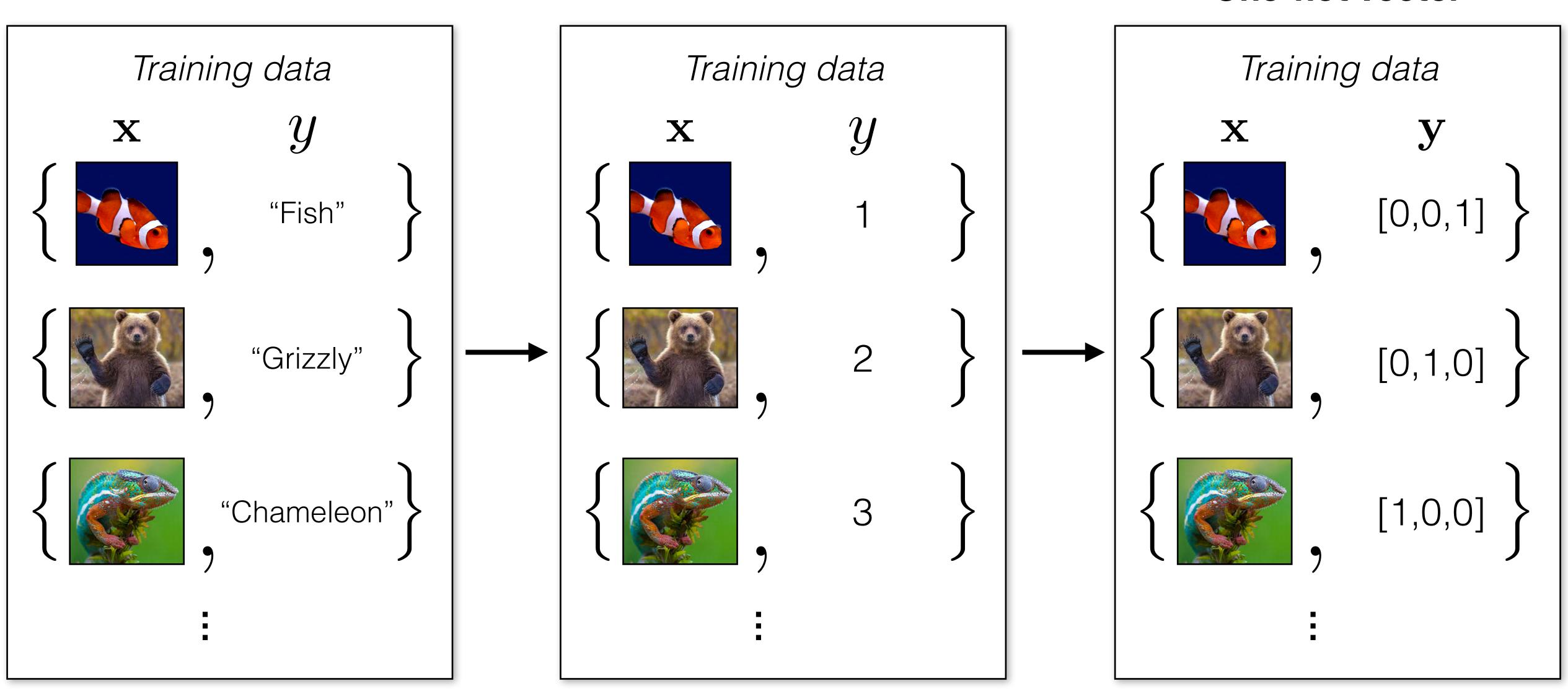
1. Transform your data into numbers (e.g., a vector)

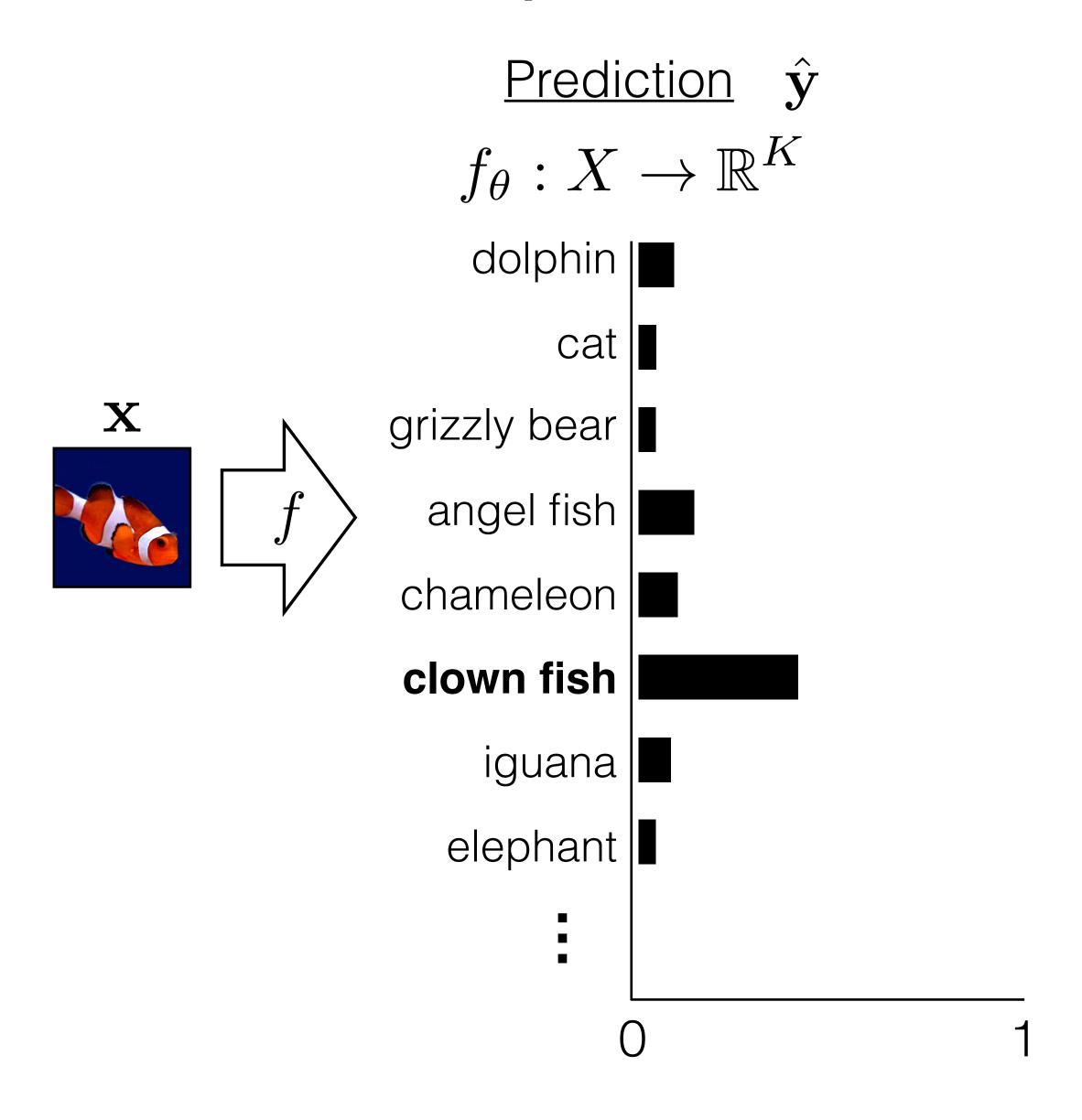
2. Transform your goal into a numerical measure (objective function)

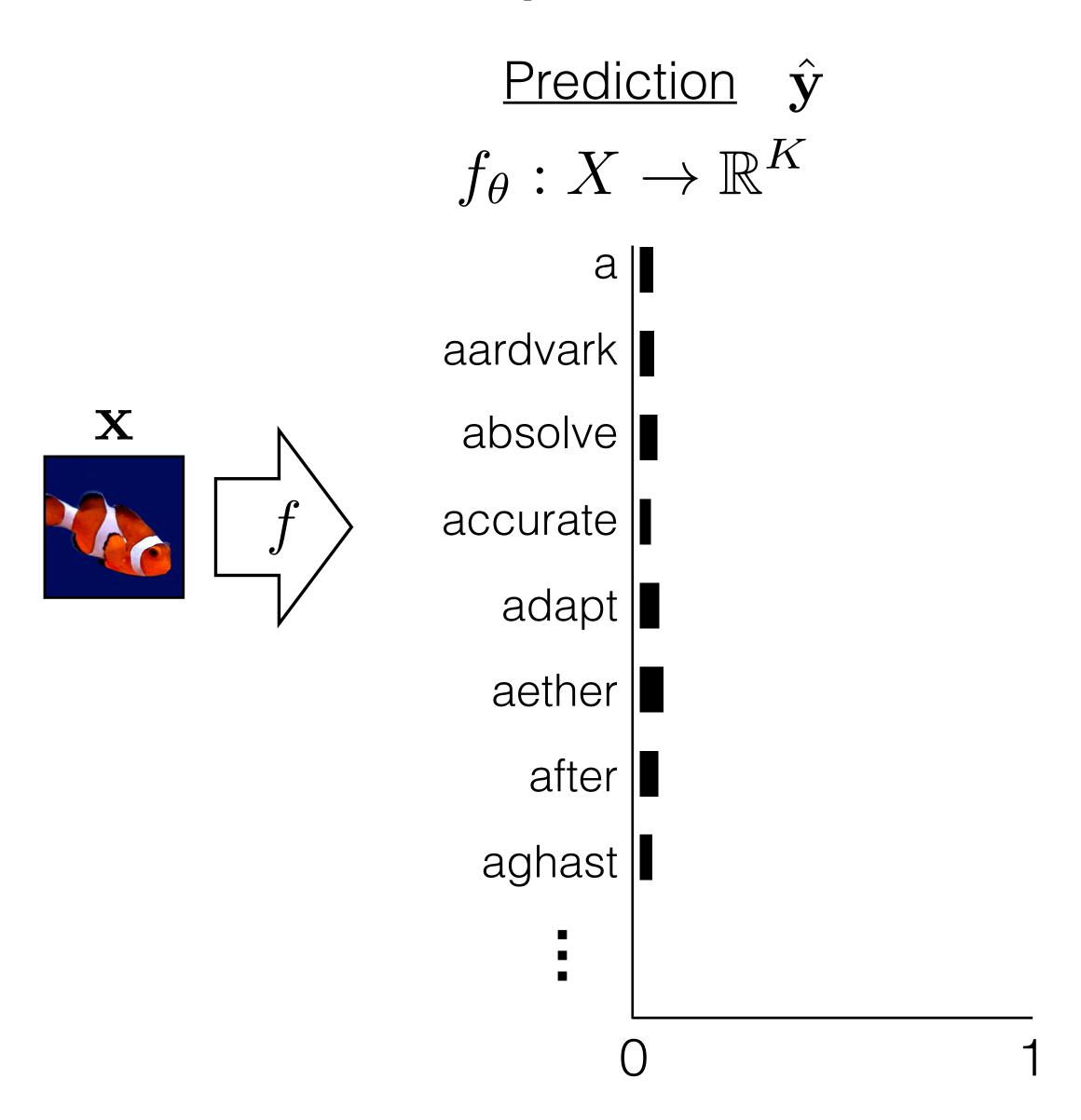
3. #1 and #2 specify the "learning problem"

4. Use a generic optimizer (SGD) and an appropriate architecture (e.g., CNN or RNN) to solve the learning problem

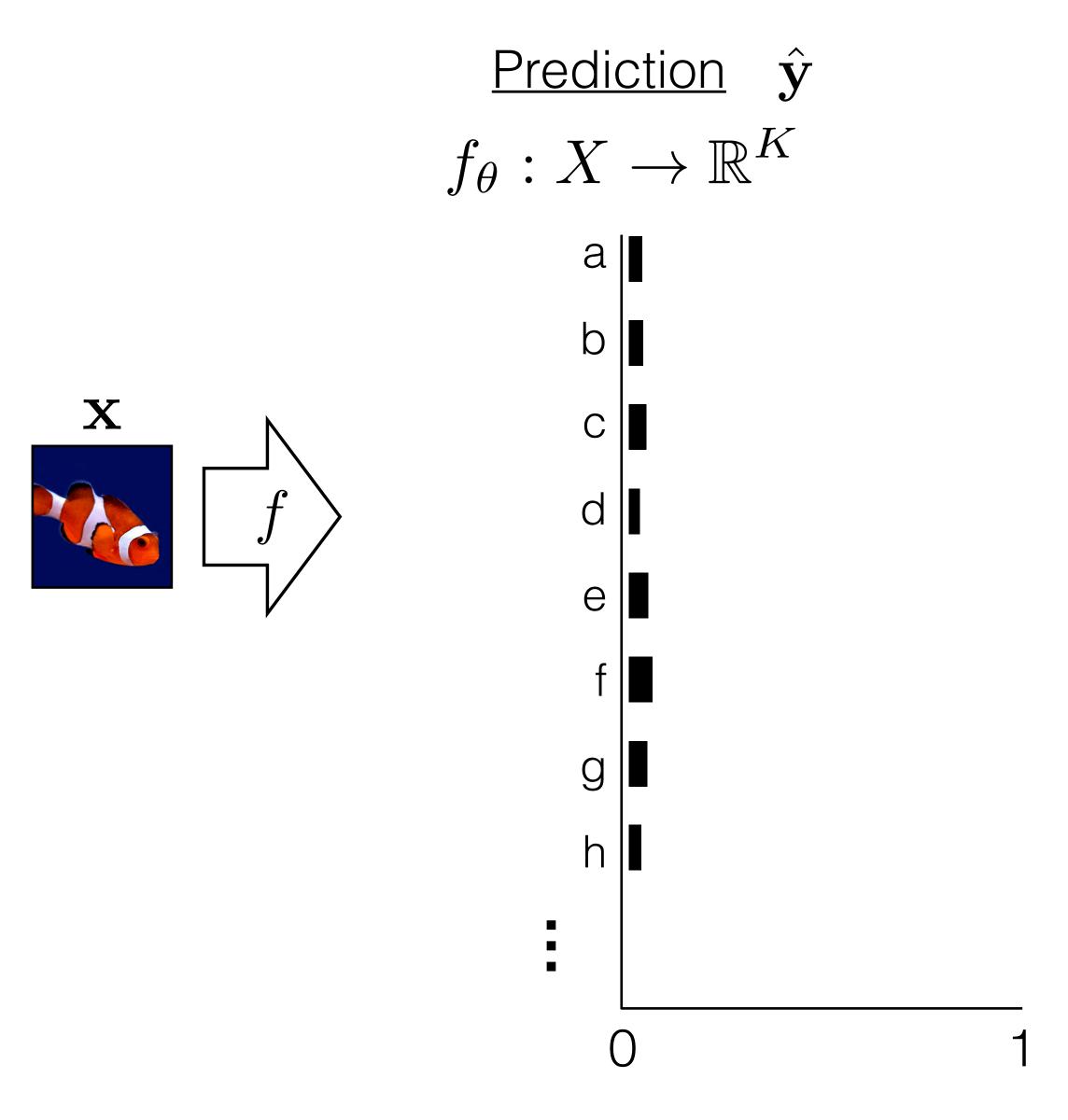
#### **One-hot vector**





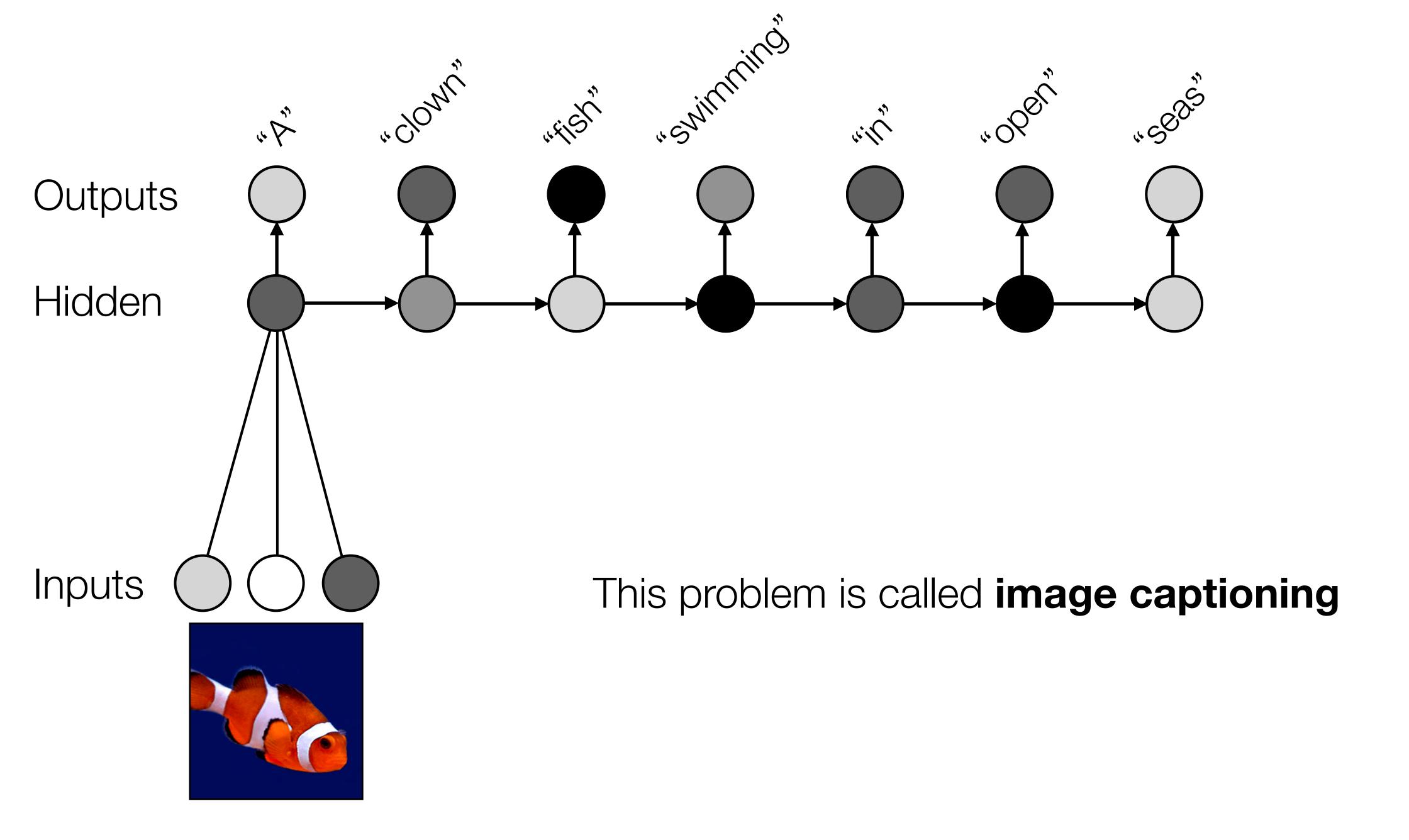


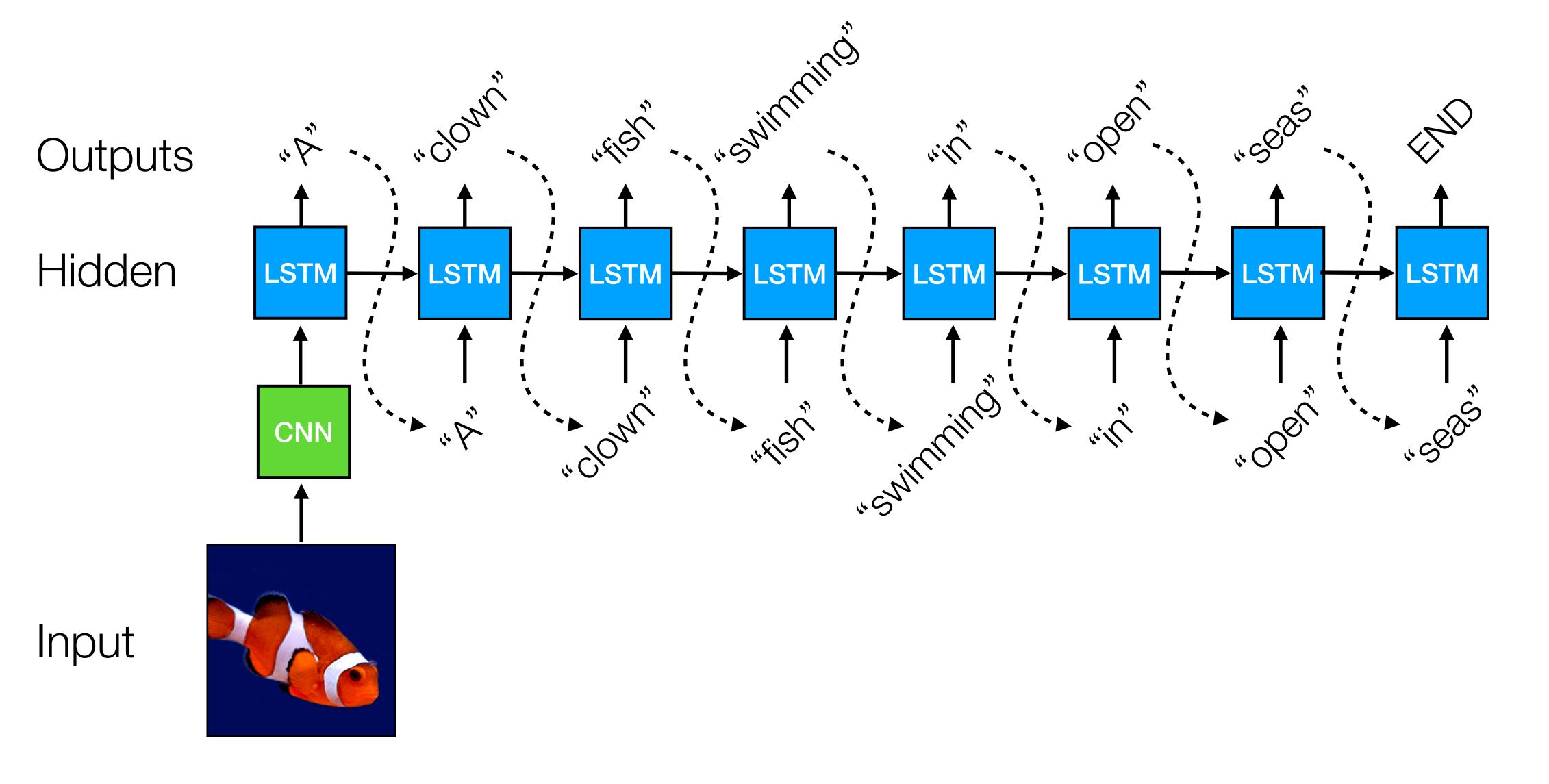
Rather than having just a handful of possible object classes, we can represent all words in a large vocabulary using a very large K (e.g., K=100,000).



Or, represent each character as a class (e.g., K=26 for English letters),

and represent words as a sequence of characters.





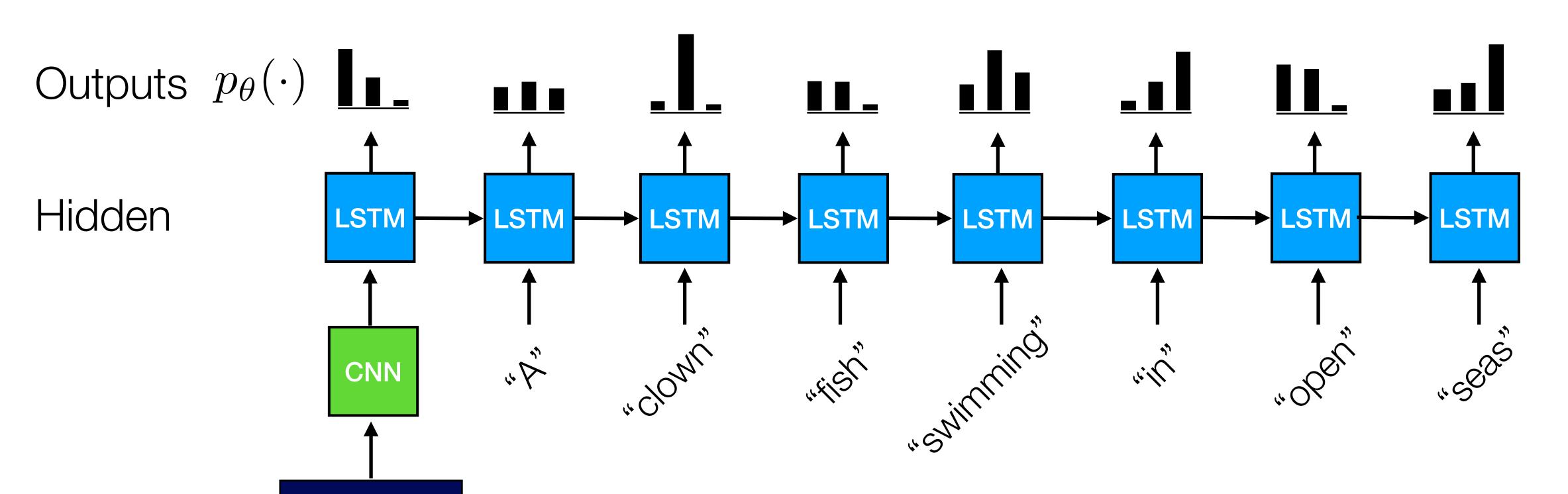
## Training

Targets y

urish uswinning

1, "Ob

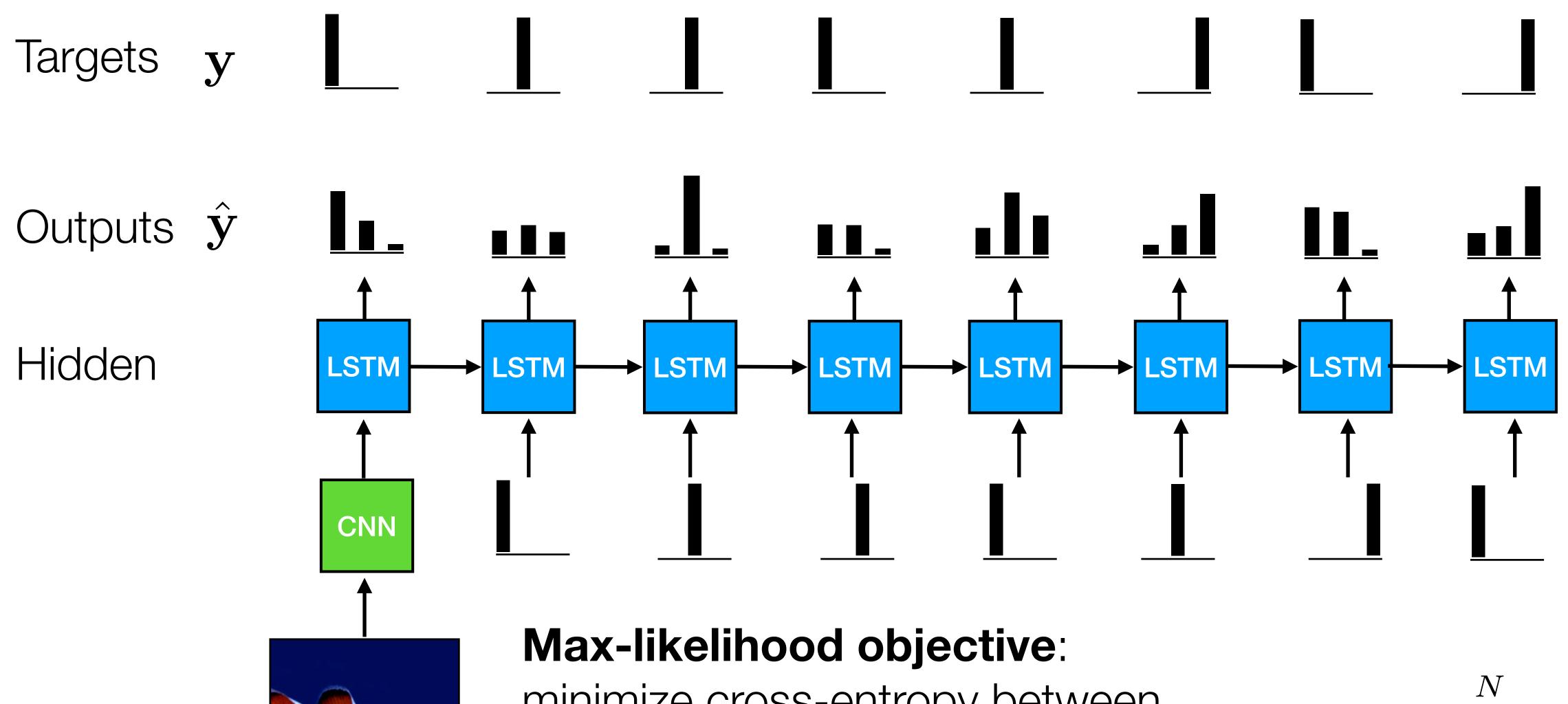
"COUR



Input

**Max-likelihood objective**: maximize probability the model assigns to each target word:  $\arg\max_{\theta}\log p_{\theta}(y)$ 

## Training



Input

minimize cross-entropy between model outputs and one-hot encoded targets.

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{N} H(\mathbf{y}_i, \hat{\mathbf{y}}_i)$$

## Testing

Samples

Outputs  $p_{\theta}(\cdot)$ 

Hidden

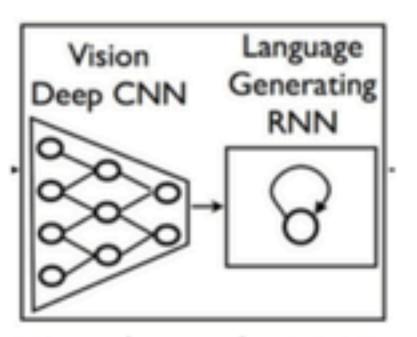
LSTM **LSTM LSTM** LSTM **LSTN LSTN** CNN

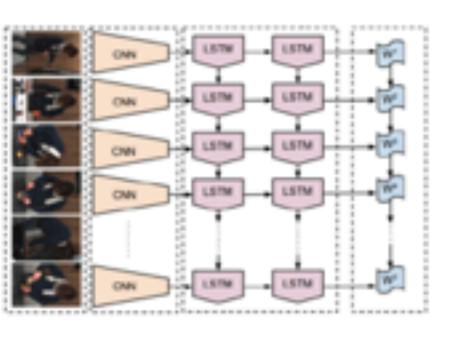
Input

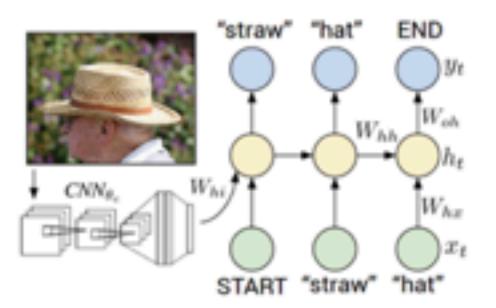
Sample from predicted distribution over words.

Alternatively, sample most likely word.

## It was very popular a few years ago









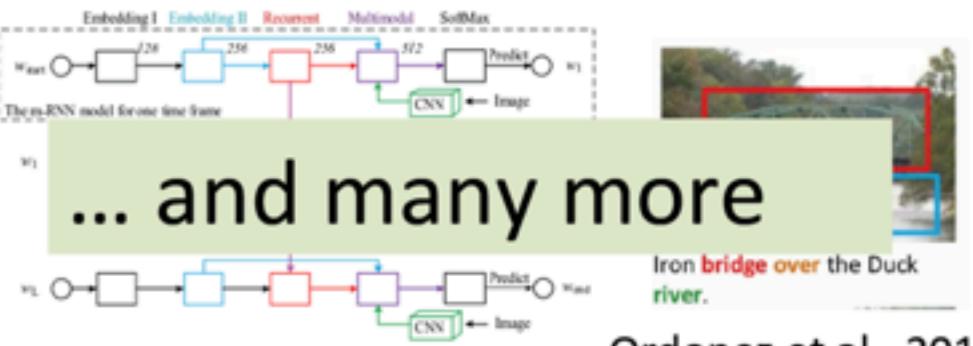
Vinyals et al., 2015

Donahue et al., 2015

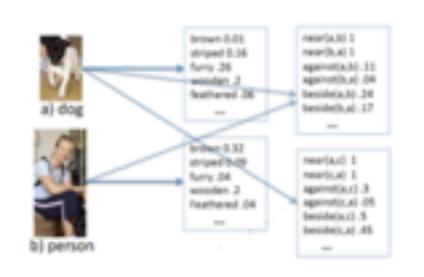
Karpathy and Fei-Fei, 2015 Hodosh et al., 2013



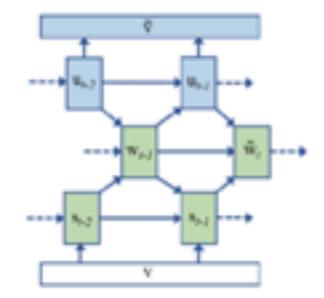
Fang et al., 2015

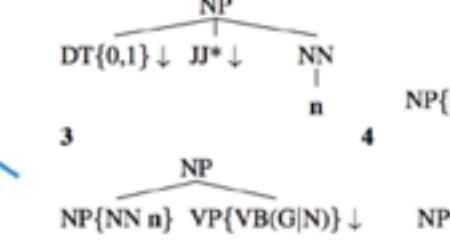


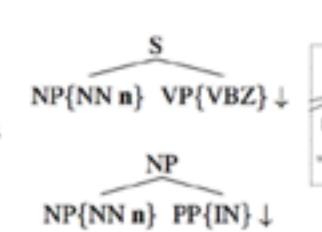
Mao et al., 2015 Ordonez et al., 2011

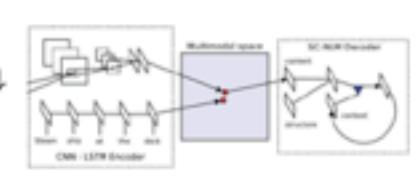


Kulkarni et al., 2011









Chen and Zitnick, 2015 Farhadi et al., 2010

Mitchell et al., 2012

Kiros et al., 2015

A person riding a motorcycle on a dirt road.



A group of young people playing a game of frisbee.



A herd of elephants walking across a dry grass field.



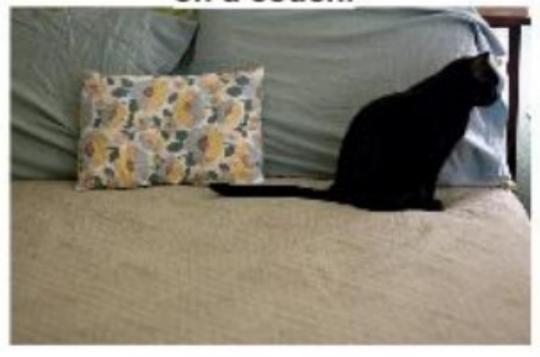
Two dogs play in the grass.



Two hockey players are fighting over the puck.



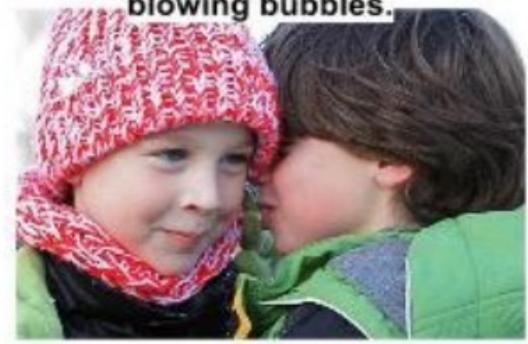
A close up of a cat laying on a couch.



A skateboarder does a trick on a ramp.



A little girl in a pink hat is blowing bubbles.



A red motorcycle parked on the



A dog is jumping to catch a



A refrigerator filled with lots of food and drinks.



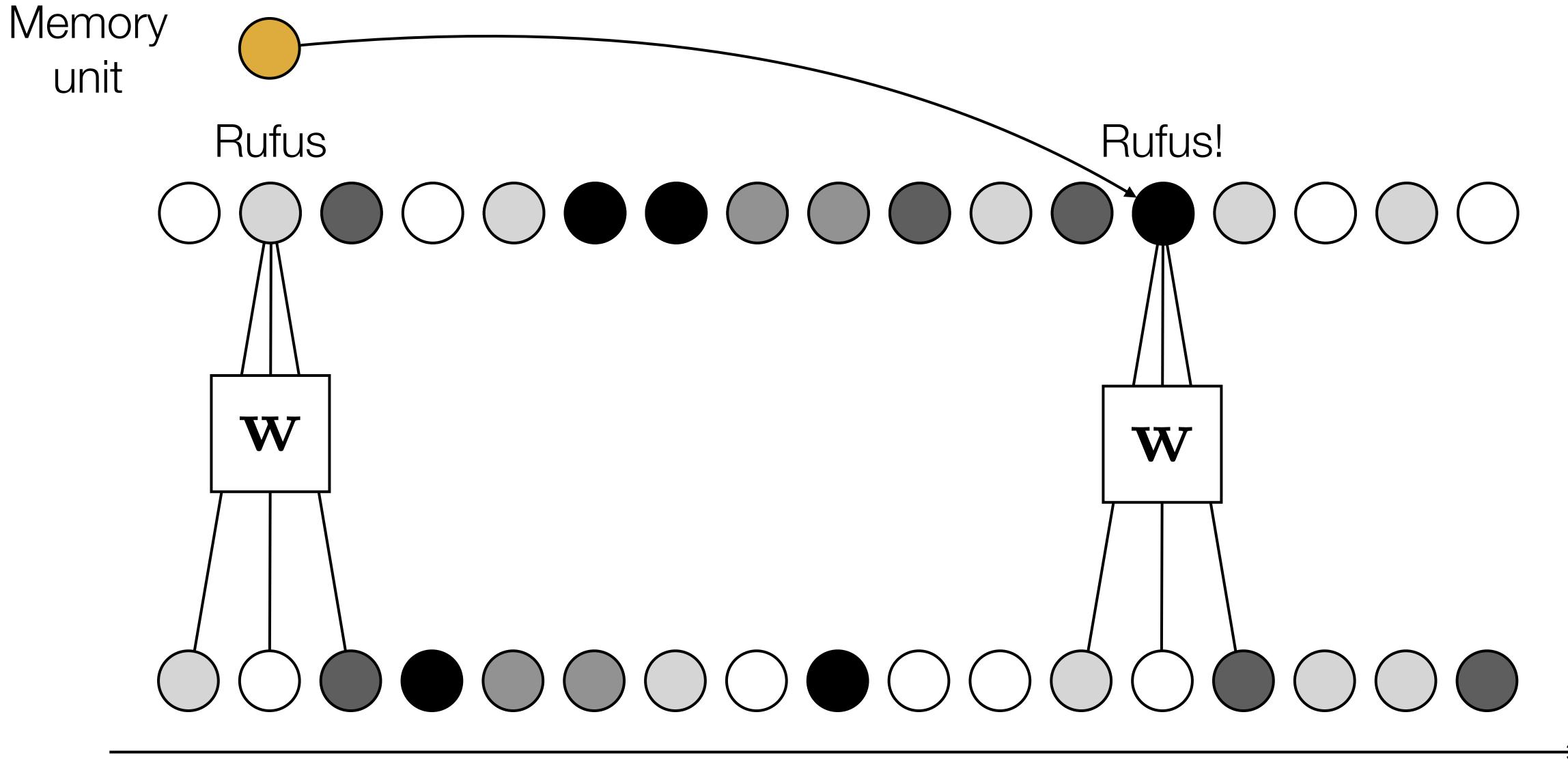
A yellow school bus parked



## The problem of long-range dependences

#### Why not remember everything?

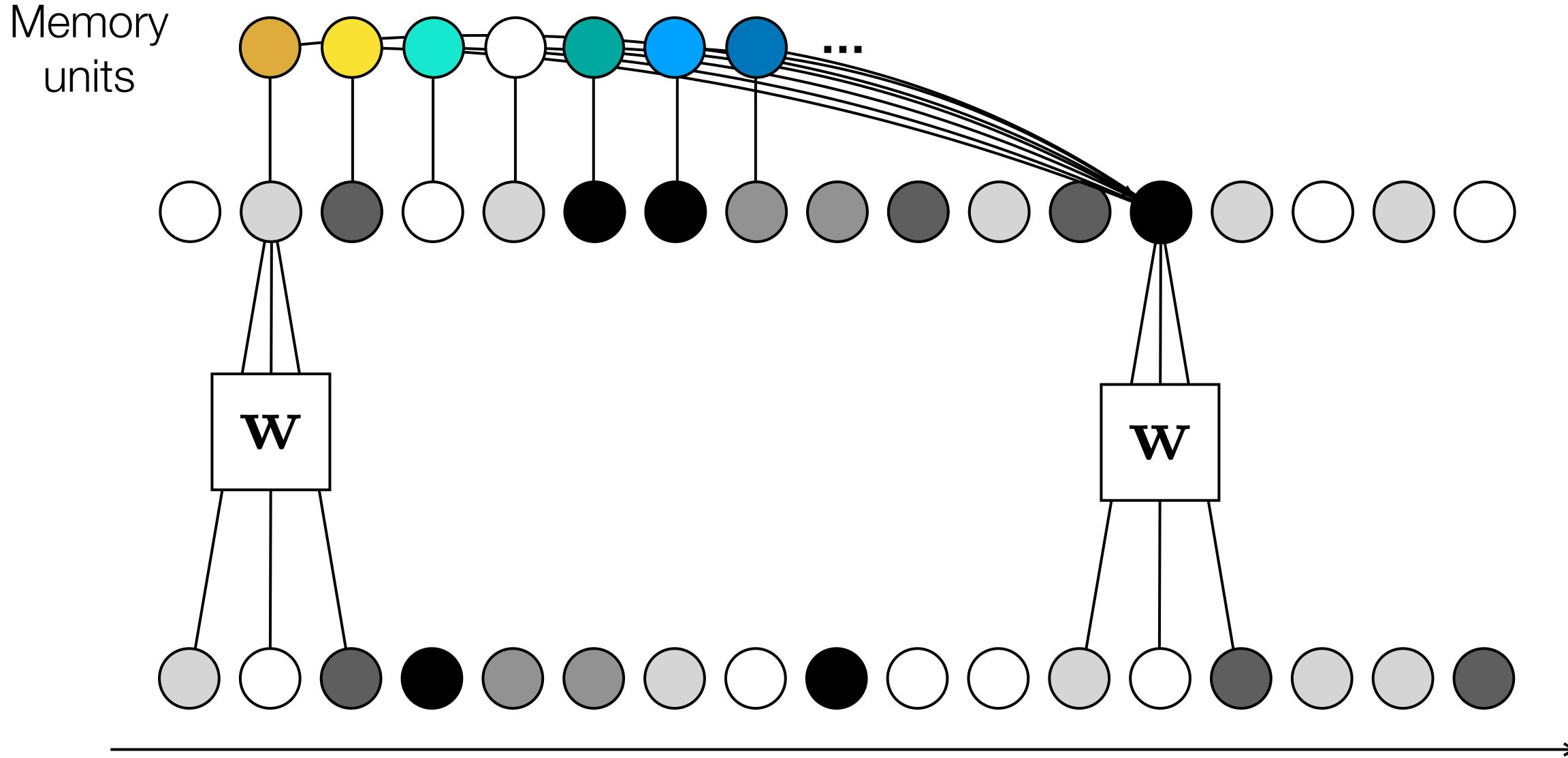
- Memory size grows with t
- This kind of memory is **nonparametric**: there is no finite set of parameters we can use to model it
- RNNs make a Markov assumption the future hidden state only depends on the immediately preceding hidden state
- By putting the right info in to the hidden state, RNNs can model depedences that are arbitrarily far apart



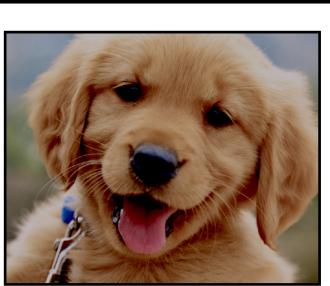




time







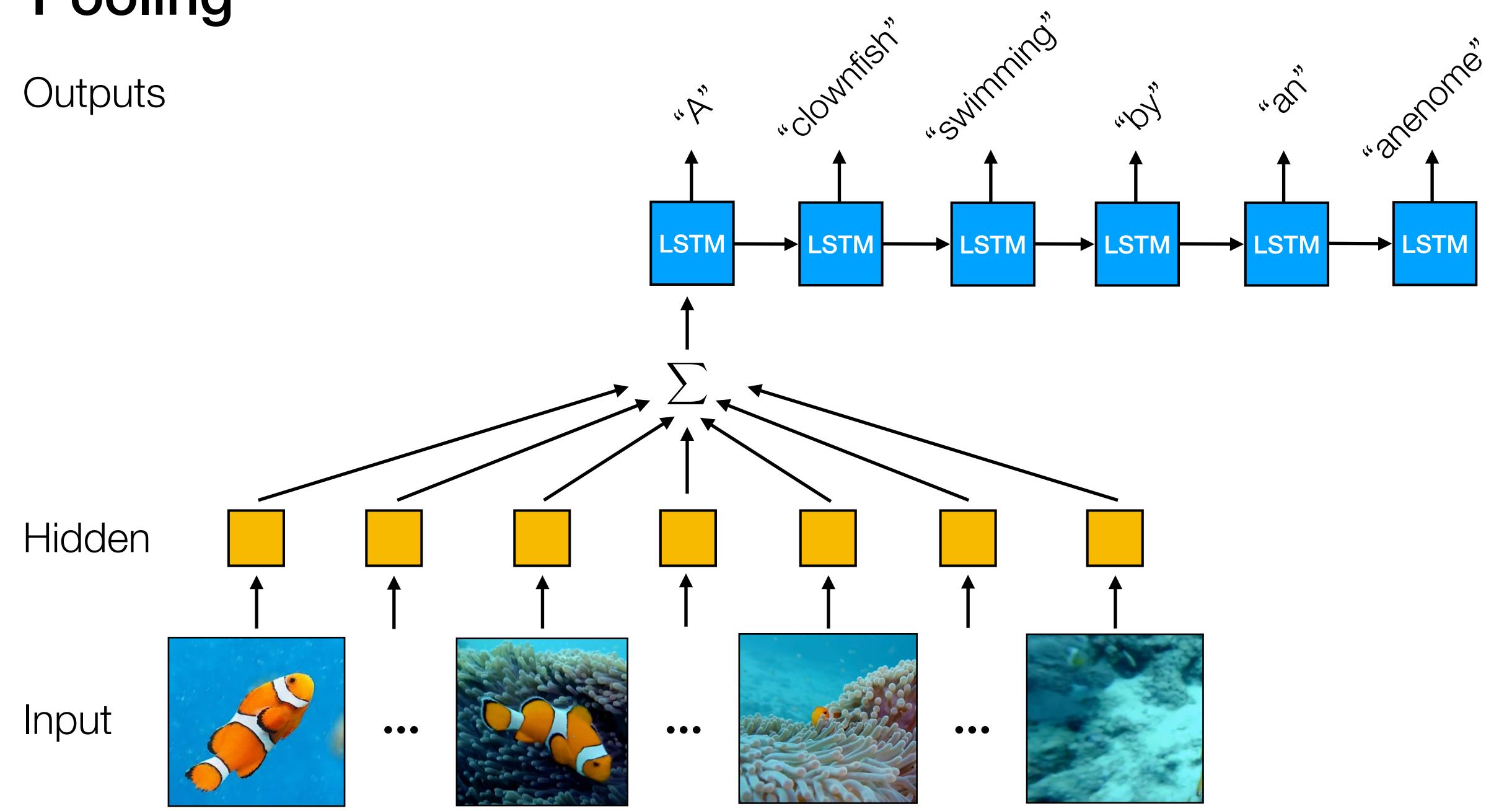
time

## The problem of long-range dependences

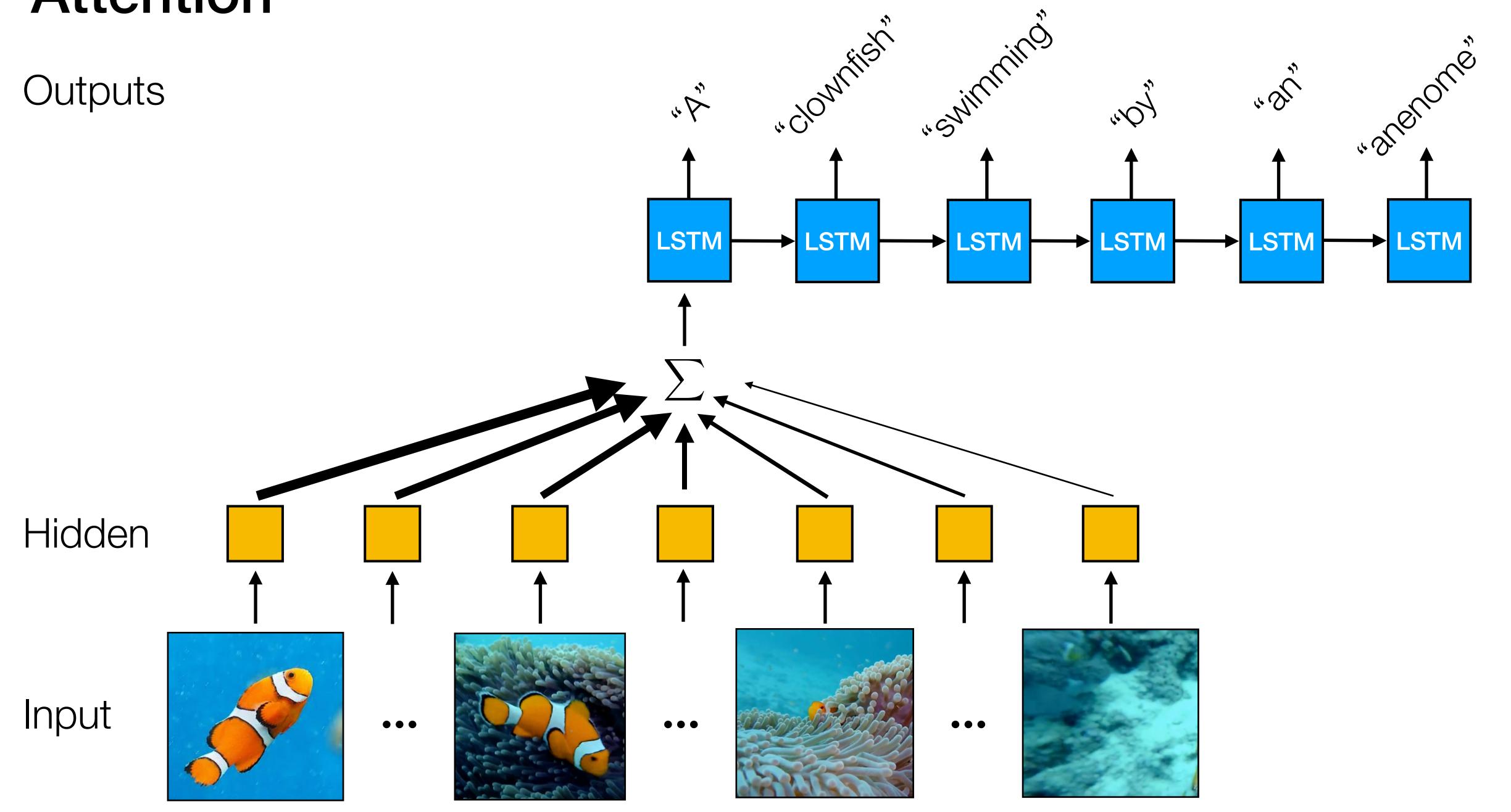
Other methods exist that do directly link old "memories" (observations or hidden states) to future predictions:

- Temporal convolutions
- Attention / Transformers (see <a href="https://arxiv.org/abs/1706.03762">https://arxiv.org/abs/1706.03762</a>)
- Memory networks (see <a href="https://arxiv.org/abs/1410.3916">https://arxiv.org/abs/1410.3916</a>)

## Pooling

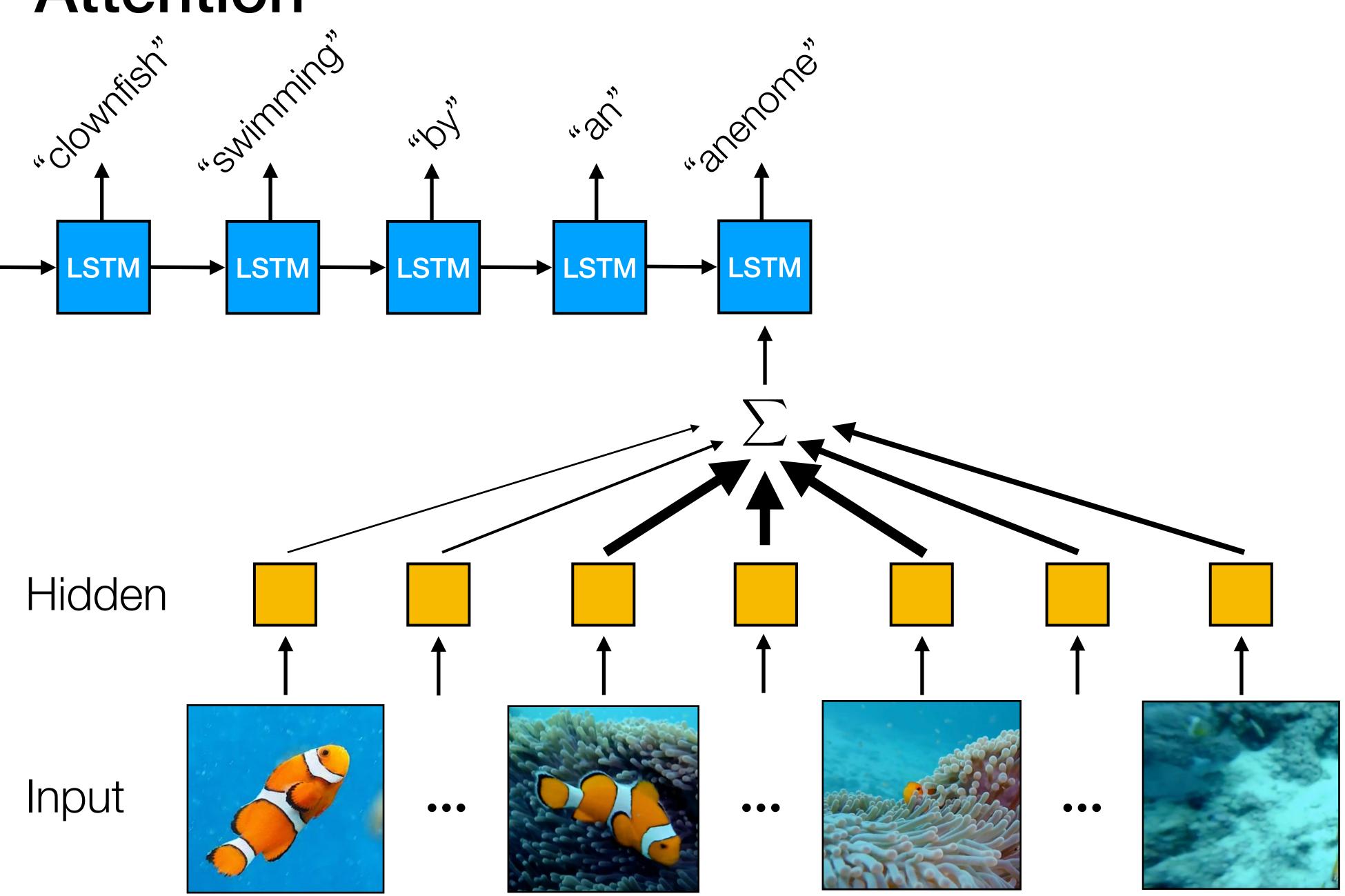


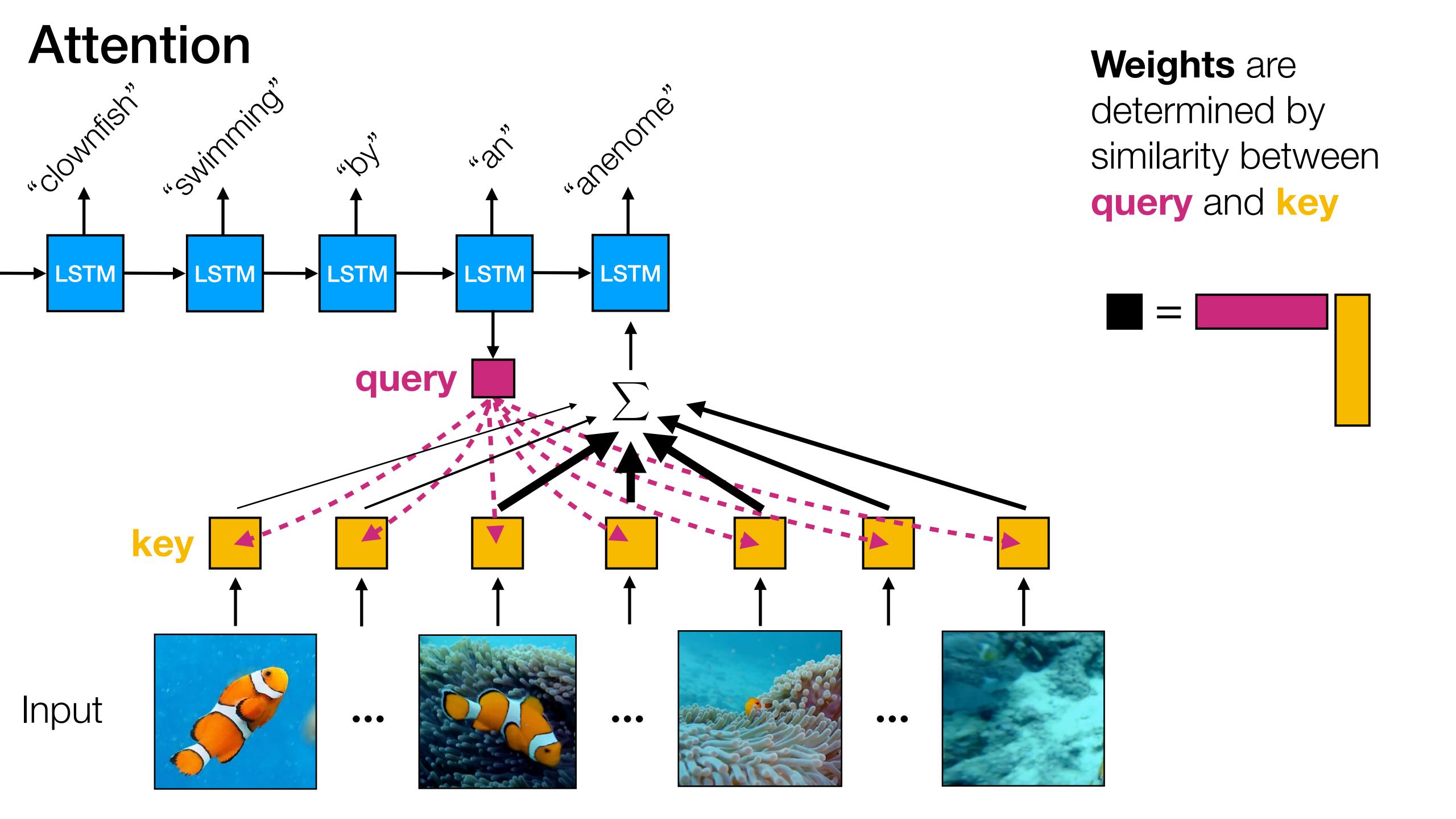
### Attention

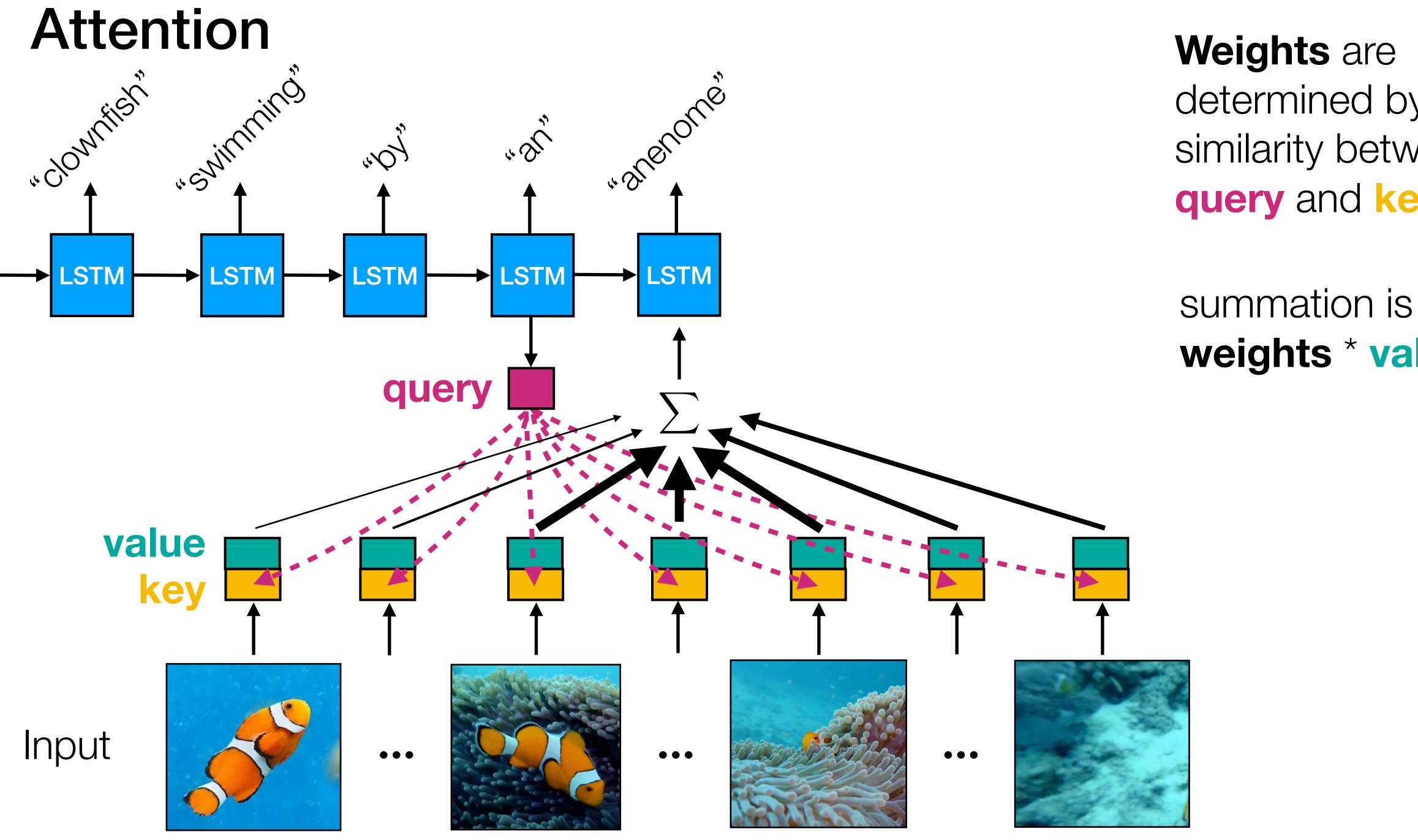


# Attention Outputs " > " → LSTM → LSTM → LSTM LSTM LSTM **→** LSTM Hidden Input

## Attention





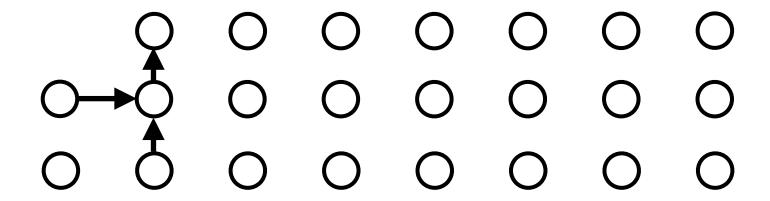


determined by similarity between query and key

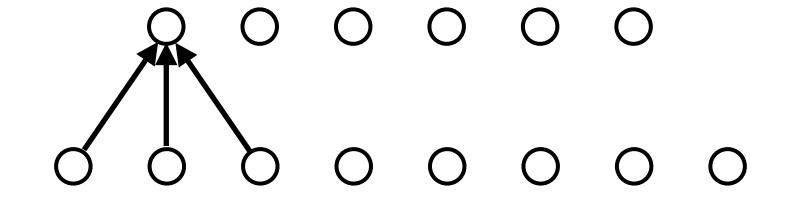
summation is over weights \* value

## Modeling arbitrarily long sequences

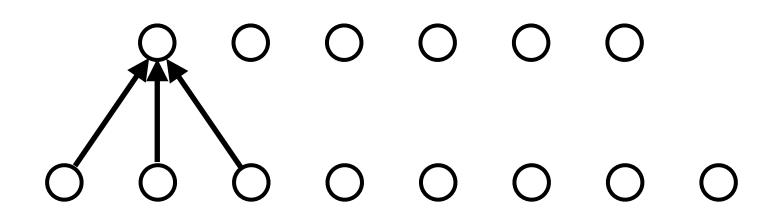
RNNs — recurrent weights are shared across time



• Convolution — conv weights are shared across time



Attention — weights are dynamically determined



Anything you can do w.r.t. time, you can do w.r.t. space, and vice versa.

Popular right now: treat pixels as a sequence and then apply sequence modeling methods.

#### **Generative Pretraining from Pixels**

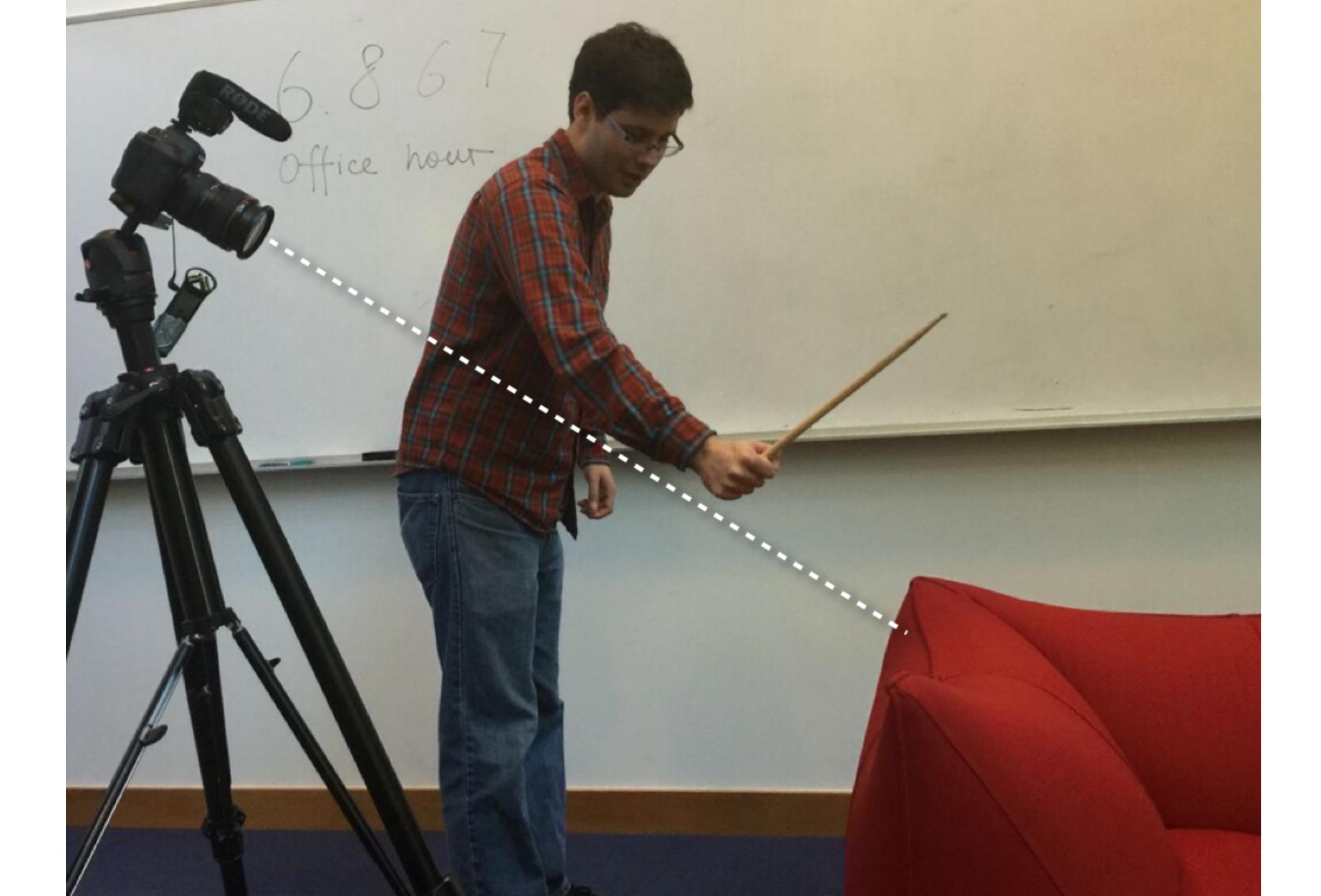
Mark Chen <sup>1</sup> Alec Radford <sup>1</sup> Rewon Child <sup>1</sup> Jeff Wu <sup>1</sup> Heewoo Jun <sup>1</sup> Prafulla Dhariwal <sup>1</sup> David Luan <sup>1</sup> Ilya Sutskever <sup>1</sup>

#### **Abstract**

Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels, without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels, we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised Wide ResNet, and 99.0% accuracy with full finetuning, matching the top supervised pre-trained models. An even larger model trained on a mixture of ImageNet and web images is competitive with self-supervised benchmarks on ImageNet, achieving 72.0% top-1 accuracy on a linear probe of our features.

ported strong results using a single layer of learned features (Coates et al., 2011), or even random features (Huang et al., 2014; May et al., 2017). The approach fell out of favor as the state of the art increasingly relied on directly encoding prior structure into the model and utilizing abundant supervised data to directly learn representations (Krizhevsky et al., 2012; Graves & Jaitly, 2014). Retrospective study of unsupervised pre-training demonstrated that it could even hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a different domain. After initial strong results for word vectors (Mikolov et al., 2013), it has pushed the state of the art forward in Natural Language Processing on most tasks (Dai & Le, 2015; Peters et al., 2018; Howard & Ruder, 2018; Radford et al., 2018; Devlin et al., 2018). Interestingly, the training objective of a dominant approach like BERT, the prediction of corrupted inputs, closely resembles that of the Denoising Autoencoder, which was originally developed for images.



## The Greatest Hits dataset

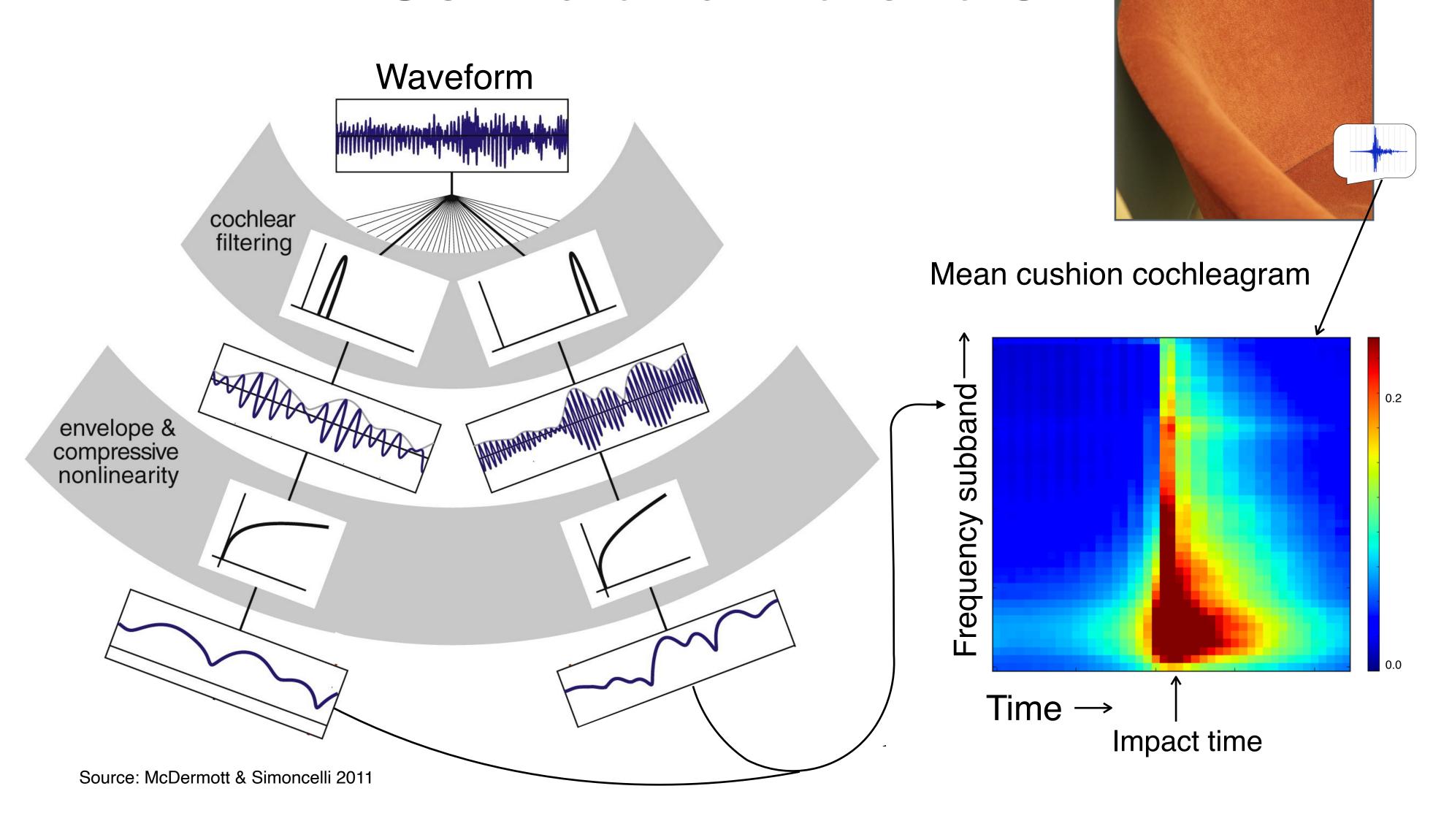


#### The Greatest Hits dataset

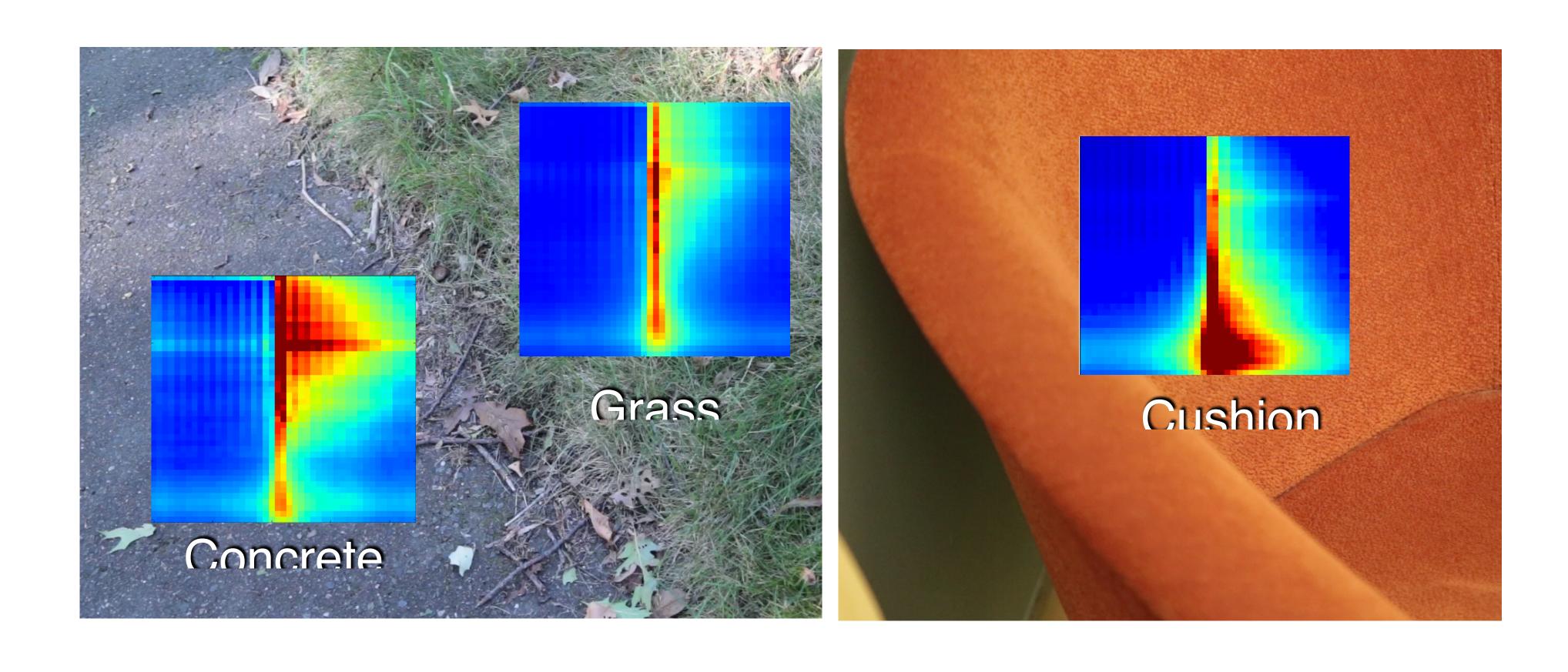
- 978 videos of people probing scenes with a drumstick
- 46,620 hits and scratches
- Material, action, and reaction labels (used for analysis)



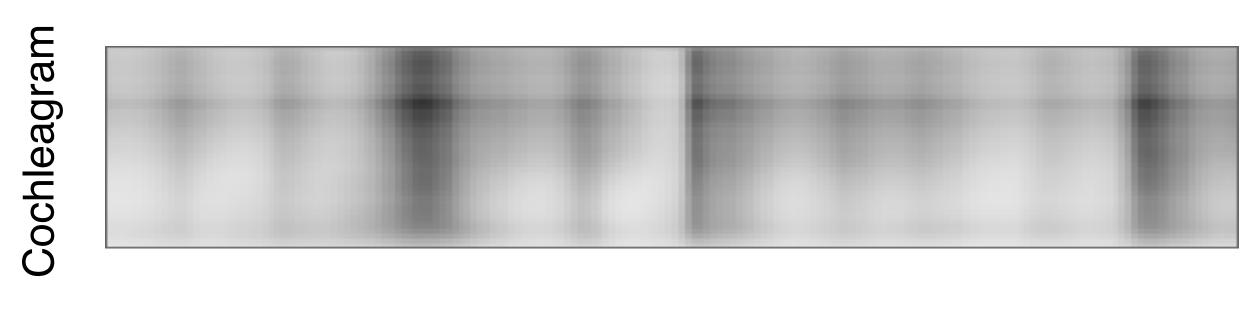
### Sound and materials

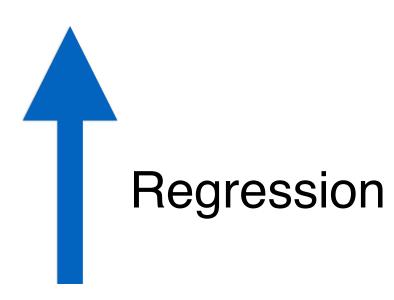


## Sound and materials



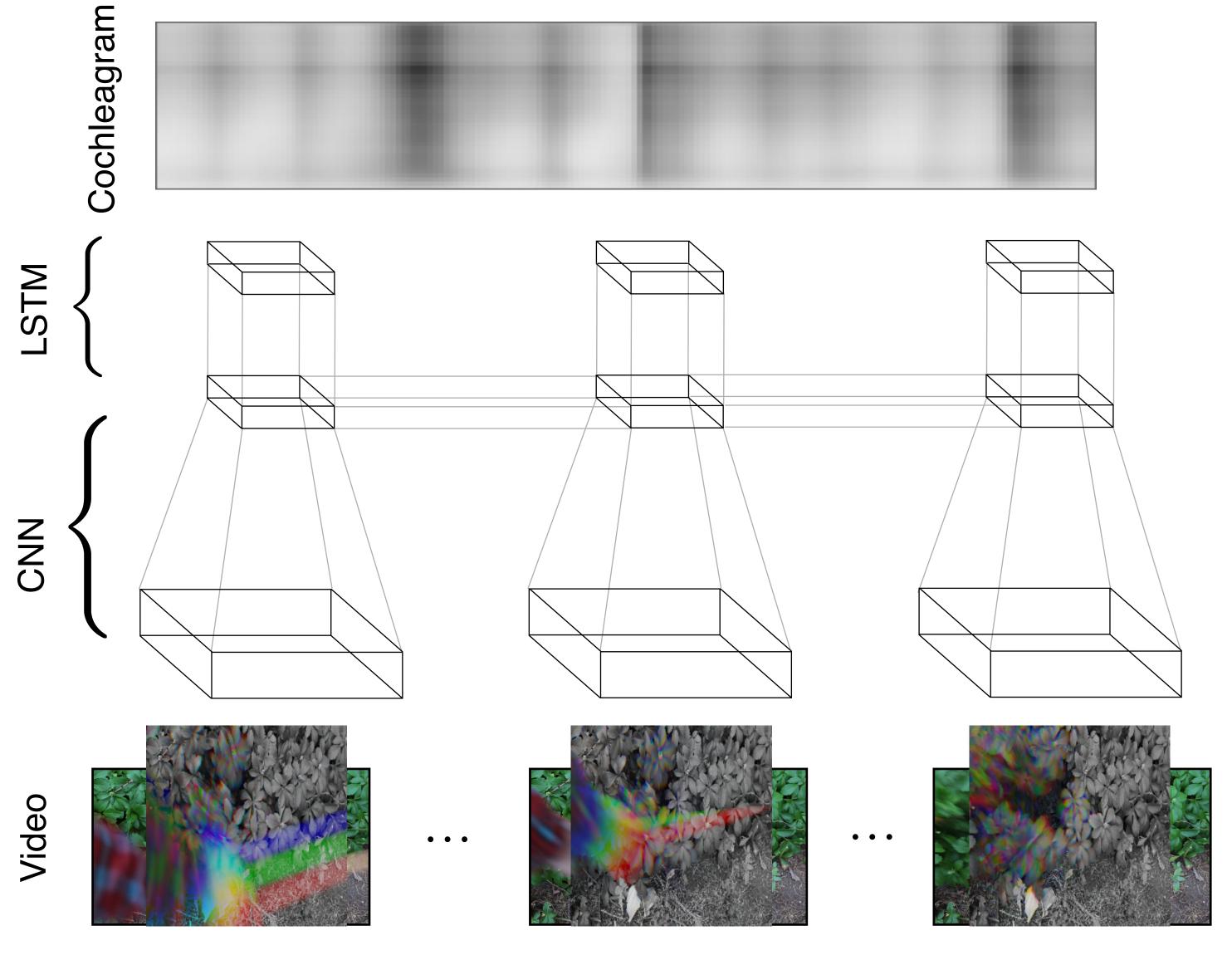
# Predicting sound features





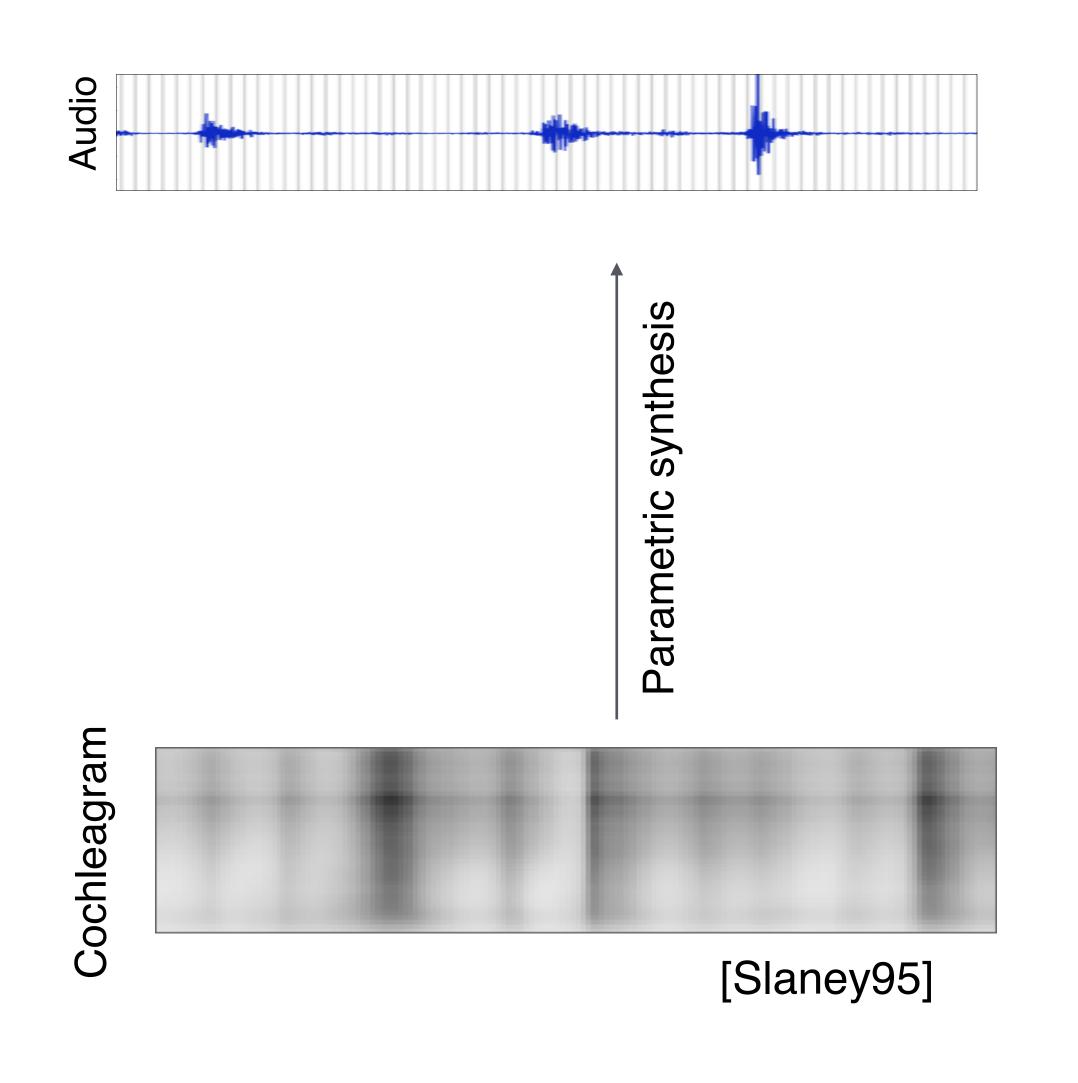


### Predicting sound features



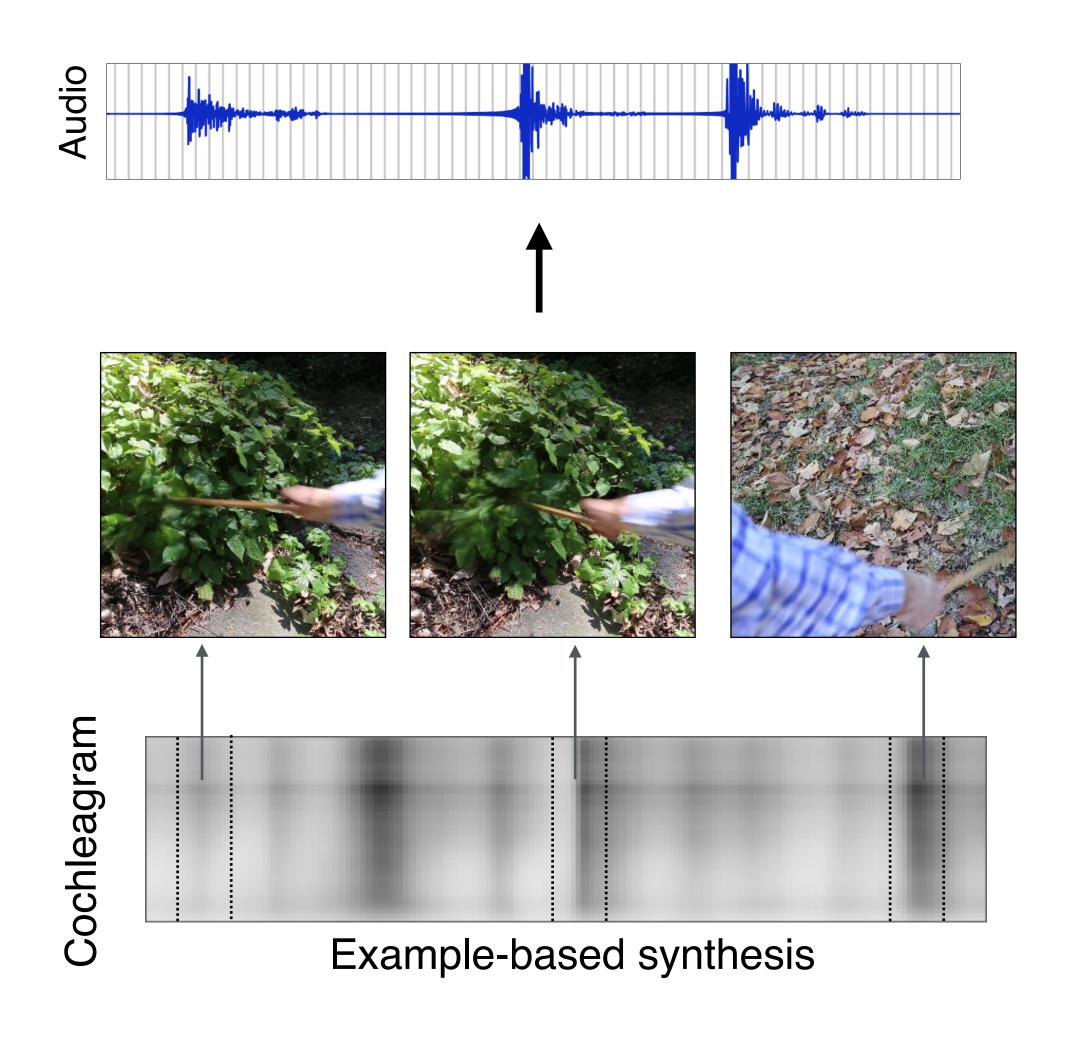
Two-stream CNN: color + spacetime images

## Generating a waveform



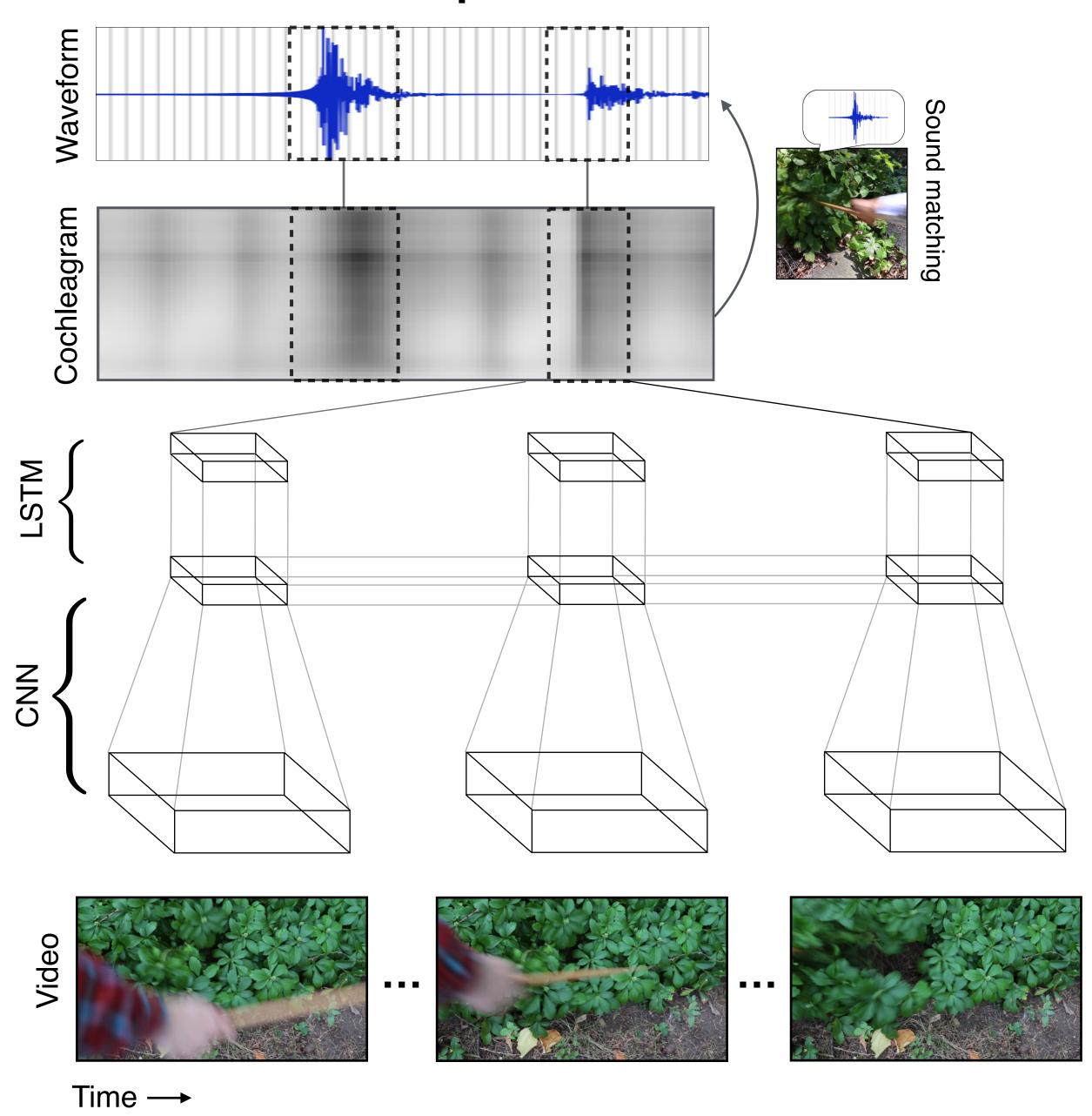


## Generating a waveform





# Recap: full model





Our output

Original sound source





Our output

Original sound source





Our output

Original sound source









