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15. Scene Understanding

« Semantics
e Object detection
e Semantic segmentation
® |nstance segmentation
e Geometry
e 3D in the deep learning era
e Single view depth estimation

e Unsupervised learning of monocular depth cues
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3D, compositional models

Binford and generalized cylinders

Recognition by components

Object Recognition in the Geometric Era: a Retrospective. Joseph L. Mundy. 2006
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Recognition-by-Components: A Theory of Human Image Understanding.

Psychological Review, 1987.

Irving Biederman



Part based models

The Representation and Matching of Pictorial Structures

MARTIN A. FISCHLER axp ROBERT A. ELSCHLAGER
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Scene models

Multiple levels of representation -- pixels > patches > regions > subimages > objects
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Fig. 1 Illustration of Levels of Description in
Processing-Unit Hierarchy

MODEL REPRESENTATIONS AND CONTROL STRUCTURES
IN IMAGE UNDERSTANDING

Takeo

Kanade

Department of Information Science
Kyoto University Kyoto, Japan

ABSTRACT

This paper overviews and discusses model re-
presentations and control structures in image under-
standing. Hierarchies are observed in the levels
of description used in image understanding along a
few dimensions: processing unit, detail, composition
and scene/view distinction. Emphasis is placed on
the importance of explicitly handling the hierarchies
both in representing knowledge and in using it. A
scheme of "knowledge block" representation which is
structured along the processing-unit hierarchy is
also presented.

I. INTRODUCTION

Image Understanding System(IUS) constructs a
description of the scene being viewed from an array
of image sensory data: intensity, color, and some-
times range data. Image understanding is best char-
acterized by description, whereas pattern recognit-
ion by classification, and image processing by image
output. The level and scope of the goal description
depend on the task given to the IUS: whether it is
interpretation, object detection, change detection,
image matching, etc. It may appear that the discus-
sion in this paper will take usally the flavor of

scene interpretation from a monocular intensity image.

Observing that there are hierarchies of levels
of description along a few dimensions, this paper
overviews and discusses model representations and
control structures in image understanding. Emphasis
is placed on the importance of explicitly handling
the hierarchies both in representing knowledge
about scenes and in using it, especially processing-
unit hierarchy and scene/view domain distinction.

In the next section, the levels of description
are identified. Then section III gives an overview
and discussion on object-model representations,
together with presentation of our knowledge block
representation scheme. Section IV deals with the
problems of control structure, and finally the role
of low-level processing is discussed in section V.

II. LEVELS OF DESCRIPTION IN IMAGE UNDERSTANDING

Descriptions are not only the goal constructs,
but also the media through which various components
of an IUS communicate in the course of understand-
ing the image. There are a few orthogonal dimensions.

a) Processing-unit Hierarchy

This is a hierarchy in the levels of units
used in processing. Let us identify five levels for
the moment. For a region-based IUS, they are pixel
(an image point), patch(a group of contiguous
pixels having similar pixel properties), region(a
meaningful group of patches corresponding to a sur-
face of an object), subimage(a part of an image

corresponding to an object or a set of objects),
and object(an object as a real entity). For a line-
based IUS, the level of patch can be replaced by
line segment, region by line, and subimage by a set
of lines corresponding to an object, Fig. 1
illustrates these levels for a region-based IUS.

Akin & Reddy(1976) observed that six levels are
used when human subjects understand the contents of
an image through verbal conversation: scéne, cluster,
object, region, segment, and intensity. The number
of levels is not very significant. These levels as
well as those in Fig. 1 depend on the unitson which
different levels of processing are performed and for
whose description different vocabularies are used.
Processing in the pixel-to-patch level is often
called as low-level processing. The region-to-sub-
image level is high level in the picture processing
domain. It clearly needs to deal with semantics
which stem from the highest, object level. The patch-
.to-region level might be called as intermediate.

b) View Domain / Scene Domain Distinction

The point to be noted here is the clear dispar-
ity existing between view-domain and scene-domain
descriptions; in Fig. 1, the lower four levels are
in the view domain and the upper one in scene domain.
The need for this distinction was argued for first
and most effectively by Clowes(1971). He used the
term "picture domain" in place of "view domain".
But the latter is used in this paper to mean the
domain of observable facts by viewing the scene in
either intensity or range data. The importance of
this distinction is readily understood by thinking
that, for example, the actual meaning of "adjacen-
cy" in the view-domain description is fully under-
stood only after the relation is interpreted in the
scene-domain description. Note that the scene-domain
descriptions are not necessarily in a metrical 3-D
coordinate space; e.g., Waltz's labels of edge is a
symbolic system to represent the edge types in the 3-D
space, or even a gross subjective space will suffice.

c) Detail Hierarchy and Composition Hierarchy

The detail hierarchy is along preciseness of
description. It can exist in both the view and the
scene domains. Section 5.2 presents examples in the
view domain. An example in the scene domain is the
description of overall/detail shape of an object,
which is found in section 3.2bk). The composition
(oxr part-of) hierarchy represents part/whole rela-
tionships in the scene domain.

The processing-unit hierarchy actually contains
somewhat both aspects of the detail and composition
hierarchies in the sense that the low-level entities
are parts and details of an upper-level entity.
Unfortunately this revealed hierarchy does not di-
rectly correspond to the hierarchies which natural-
ly exist in the scene domain. This fact makes image
understanding difficult, and it is why the models
often need to represent the natural hierarchies

Invited Papers=3: Kanade
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Histograms of oriented gradients (HOG

Histograms of Oriented Gradients for Human Detection

1. Bin gradients from 8x8 pixel neighborhoods into 9 orientations
2. Linear SVM

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de 1’Europe, Montbonnot 38334, France
{Navneet.Dalal,Bill.Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and backgrounds.

1 Introduction

Detecting humans in images is a challenging task owing
to their variable appearance and the wide range of poses that
they can adopt. The first need is a robust feature set that
allows the human form to be discriminated cleanly, even in
cluttered backgrounds under difficult illumination. We study
the issue of feature sets for human detection, showing that lo-
cally normalized Histogram of Oriented Gradient (HOG) de-
scriptors provide excellent performance relative to other ex-
isting feature sets including wavelets [17,22]. The proposed
descriptors are reminiscent of edge orientation histograms
[4,5], SIFT descriptors [12] and shape contexts [1], but they
are computed on a dense grid of uniformly spaced cells and
they use overlapping local contrast normalizations for im-
proved performance. We make a detailed study of the effects
of various implementation choices on detector performance,
taking “pedestrian detection” (the detection of mostly visible
people in more or less upright poses) as a test case. For sim-
plicity and speed, we use linear SVM as a baseline classifier
throughout the study. The new detectors give essentially per-
fect results on the MIT pedestrian test set [18,17], so we have
created a more challenging set containing over 1800 pedes-
trian images with a large range of poses and backgrounds.
Ongoing work suggests that our feature set performs equally
well for other shape-based object classes.

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola et al [22] build an efficient
moving person detector, using AdaBoost to train a chain of
progressively more complex region rejection rules based on
Haar-like wavelets and space-time differences. Ronfard et
al [19] build an articulated body detector by incorporating
SVM based limb classifiers over 1* and 2™ order Gaussian
filters in a dynamic programming framework similar to those
of Felzenszwalb & Huttenlocher [3] and Ioffe & Forsyth
[9]. Mikolajczyk et al [16] use combinations of orientation-
position histograms with binary-thresholded gradient magni-
tudes to build a parts based method containing detectors for
faces, heads, and front and side profiles of upper and lower
body parts. In contrast, our detector uses a simpler archi-
tecture with a single detection window, but appears to give
significantly higher performance on pedestrian images.

3 Overview of the Method

This section gives an overview of our feature extraction
chain, which is summarized in fig. 1. Implementation details
are postponed until §6. The method is based on evaluating
well-normalized local histograms of image gradient orienta-
tions in a dense grid. Similar features have seen increasing
use over the past decade [4,5,12,15]. The basic idea is that
local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or

1
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R-CNN, Fast R-CNN, Faster R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg, jdonahue, trevor,malik}@eecs.berkeley.edu

Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
Jfollowed by domain-specific fine-tuning, yields a significant
performance boost. Since we combine region proposals
with CNNs, we call our method R-CNN: Regions with CNN
features. We also compare R-CNN to OverFeat, a recently
proposed sliding-window detector based on a similar CNN
architecture. We find that R-CNN outperforms OverFeat
by a large margin on the 200-class ILSVRC2013 detection
dataset. Source code for the complete system is available at
http://www.cs.berkeley.edu/~rbg/rcnn.

1311.2524v5 [cs.CV] 22 Oct 2014

1. Introduction

arxiv

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [29] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [15], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-

R-CNN: Regions with CNN features

| acroplane? no.
7 :

N
N
N person? yes

warped region
v

T T TONNN
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [39] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.
On the 200-class ILSVRC2013 detection dataset, R-CNN’s
mAP is 31.4%, a large improvement over OverFeat [34], which
had the previous best result at 24.3%.

archical, multi-stage processes for computing features that
are even more informative for visual recognition.

Fukushima’s “neocognitron” [19], a biologically-
inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training
algorithm. Building on Rumelhart et al. [33], LeCun et
al. [26] showed that stochastic gradient descent via back-
propagation was effective for training convolutional neural
networks (CNNs), a class of models that extend the neocog-
nitron.

CNNs saw heavy use in the 1990s (e.g., [27]), but then
fell out of fashion with the rise of support vector machines.
In 2012, Krizhevsky et al. [25] rekindled interest in CNNs
by showing substantially higher image classification accu-
racy on the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [9, 10]. Their success resulted from train-
ing a large CNN on 1.2 million labeled images, together
with a few twists on LeCun’s CNN (e.g., max(z, 0) rectify-
ing non-linearities and “dropout’ regularization).

The significance of the ImageNet result was vigorously

https://arxiv.org/pdf/1311.2524.pdf

1504.08083v2 [cs.CV] 27 Sep 2015
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Fast R-CNN

Ross Girshick
Microsoft Research

rbg@microsoft.com

Abstract

This paper proposes a Fast Region-based Convolutional
Network method (Fast R-CNN) for object detection. Fast
R-CNN builds on previous work to efficiently classify ob-
Ject proposals using deep convolutional networks. Com-
pared to previous work, Fast R-CNN employs several in-
novations to improve training and testing speed while also
increasing detection accuracy. Fast R-CNN trains the very
deep VGG 16 network 9% faster than R-CNN, is 213X faster
at test-time, and achieves a higher mAP on PASCAL VOC
2012. Compared to SPPnet, Fast R-CNN trains VGG16 3%
faster, tests 10x faster, and is more accurate. Fast R-CNN
is implemented in Python and C++ (using Caffe) and is
available under the open-source MIT License at https :
//github.com/rbgirshick/fast-rcnn.

1. Introduction

Recently, deep ConvNets [ 14, 16] have significantly im-
proved image classification [14] and object detection [9, 19]
accuracy. Compared to image classification, object detec-
tion is a more challenging task that requires more com-
plex methods to solve. Due to this complexity, current ap-
proaches (e.g., [9, 11, 19, 25]) train models in multi-stage
pipelines that are slow and inelegant.

Complexity arises because detection requires the ac-
curate localization of objects, creating two primary chal-
lenges. First, numerous candidate object locations (often
called “proposals”) must be processed. Second, these can-
didates provide only rough localization that must be refined
to achieve precise localization. Solutions to these problems
often compromise speed, accuracy, or simplicity.

In this paper, we streamline the training process for state-
of-the-art ConvNet-based object detectors [2, 11]. We pro-
pose a single-stage training algorithm that jointly learns to
classify object proposals and refine their spatial locations.

The resulting method can train a very deep detection
network (VGG16 [20]) 9x faster than R-CNN [9] and 3 x
faster than SPPnet [11]. At runtime, the detection network
processes images in 0.3s (excluding object proposal time)

while achieving top accuracy on PASCAL VOC 2012 [7]
with a mAP of 66% (vs. 62% for R-CNN).

1.1. R-CNN and SPPnet

The Region-based Convolutional Network method (R-
CNN) [9] achieves excellent object detection accuracy by
using a deep ConvNet to classify object proposals. R-CNN,
however, has notable drawbacks:

1. Training is a multi-stage pipeline. R-CNN first fine-
tunes a ConvNet on object proposals using log loss.
Then, it fits SVMs to ConvNet features. These SVMs
act as object detectors, replacing the softmax classi-
fier learnt by fine-tuning. In the third training stage,
bounding-box regressors are learned.

2. Training is expensive in space and time. For SVM
and bounding-box regressor training, features are ex-
tracted from each object proposal in each image and
written to disk. With very deep networks, such as
VGG16, this process takes 2.5 GPU-days for the S5k
images of the VOCO07 trainval set. These features re-
quire hundreds of gigabytes of storage.

3. Object detection is slow. At test-time, features are
extracted from each object proposal in each test image.
Detection with VGG 16 takes 47s / image (on a GPU).

R-CNN is slow because it performs a ConvNet forward
pass for each object proposal, without sharing computation.
Spatial pyramid pooling networks (SPPnets) [! ] were pro-
posed to speed up R-CNN by sharing computation. The
SPPnet method computes a convolutional feature map for
the entire input image and then classifies each object pro-
posal using a feature vector extracted from the shared fea-
ture map. Features are extracted for a proposal by max-
pooling the portion of the feature map inside the proposal
into a fixed-size output (e.g., 6 x 6). Multiple output sizes
are pooled and then concatenated as in spatial pyramid pool-
ing [15]. SPPnet accelerates R-CNN by 10 to 100X at test
time. Training time is also reduced by 3 x due to faster pro-
posal feature extraction.

! All timings use one Nvidia K40 GPU overclocked to 875 MHz.

https://arxiv.org/pdf/1504.08083.pdf

Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun

Abstract—State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations.
Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region
proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image
convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional

made publicly available.

network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to
generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN
into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with
“attention” mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3],
our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection
accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO
2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been

Index Terms—Object Detection, Region Proposal, Convolutional Neural Network.

[cs.CV] 6 Jan 2016

1 INTRODUCTION

C7) Recent advances in object detection are driven by
the success of region proposal methods (e.g., [4])
and region-based convolutional neural networks (R-
< CNNG) [5]. Although region-based CNNs were com-
== putationally expensive as originally developed in [5],
O their cost has been drastically reduced thanks to shar-
\O ing convolutions across proposals [1], [2]. The latest
O incarnation, Fast R-CNN [2], achieves near real-time
) rates using very deep networks [3], when ignoring the
.. time spent on region proposals. Now, proposals are the
~ test-time computational bottleneck in state-of-the-art
SZ detection systems.
« Region proposal methods typically rely on inex-
¢J pensive features and economical inference schemes.
Selective Search [4], one of the most popular meth-
ods, greedily merges superpixels based on engineered
low-level features. Yet when compared to efficient
detection networks [2], Selective Search is an order of
magnitude slower, at 2 seconds per image in a CPU
implementation. EdgeBoxes [6] currently provides the
best tradeoff between proposal quality and speed,
at 0.2 seconds per image. Nevertheless, the region
proposal step still consumes as much running time
as the detection network.

O7v

e S. Ren is with University of Science and Technology of China, Hefei,
China. This work was done when S. Ren was an intern at Microsoft
Research. Email: sqren@mail.ustc.edu.cn

e K. He and ]. Sun are with Visual Computing Group, Microsoft
Research. E-mail: {kahe,jiansun}@microsoft.com

e R. Girshick is with Facebook Al Research. The majority of this work
was done when R. Girshick was with Microsoft Research. E-mail:

rbg@fb.com

One may note that fast region-based CNNs take
advantage of GPUs, while the region proposal meth-
ods used in research are implemented on the CPU,
making such runtime comparisons inequitable. An ob-
vious way to accelerate proposal computation is to re-
implement it for the GPU. This may be an effective en-
gineering solution, but re-implementation ignores the
down-stream detection network and therefore misses
important opportunities for sharing computation.

In this paper, we show that an algorithmic change—
computing proposals with a deep convolutional neu-
ral network—leads to an elegant and effective solution
where proposal computation is nearly cost-free given
the detection network’s computation. To this end, we
introduce novel Region Proposal Networks (RPNs) that
share convolutional layers with state-of-the-art object
detection networks [1], [2]. By sharing convolutions at
test-time, the marginal cost for computing proposals
is small (e.g., 10ms per image).

Our observation is that the convolutional feature
maps used by region-based detectors, like Fast R-
CNN, can also be used for generating region pro-
posals. On top of these convolutional features, we
construct an RPN by adding a few additional con-
volutional layers that simultaneously regress region
bounds and objectness scores at each location on a
regular grid. The RPN is thus a kind of fully convo-
lutional network (FCN) [7] and can be trained end-to-
end specifically for the task for generating detection
proposals.

RPN are designed to efficiently predict region pro-
posals with a wide range of scales and aspect ratios. In
contrast to prevalent methods [8], [9], [1], [2] that use

https://arxiv.org/pdf/1506.01497.pdf
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Semantic segmentation

(Colors represent one-hot codes)



} What's the object class of the center pixel?

N
Training data
X Y
!\ “Bird’ } b\
,
: It ’:N i{> “Sky”

“Sky” } K-way classification problem

Solve with K-dimensional softmax regression:
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Fully Convolutional Networks

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell
UC Berkeley
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Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. QOur key insight is to build “fully convolutional”
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networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30,3,9,31, 17,15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

* Authors contributed equally

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 1 7], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear
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Encoder-decoder architectures
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Semantic segmentation




Instance segmentation

Challenge: unbounded number of output instances
(can’t just do K-way classification)



Instance segmentation




Approaches

InstanceCut, DWT, SAIS, DIN, FCIS, SGN, Mask-RCNN, PANet etc.
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Mask R-CNN

Kaiming He  Georgia Gkioxari Piotr Dollar Ross Girshick
Facebook Al Research (FAIR)

Abstract

We present a conceptually simple, flexible, and general
framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each in-
stance. The method, called Mask R-CNN, extends Faster
R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recogni-
tion. Mask R-CNN is simple to train and adds only a small
overhead to Faster R-CNN, running at 5 fps. Moreover,
Mask R-CNN is easy to generalize to other tasks, e.g., al-
lowing us to estimate human poses in the same framework.
We show top results in all three tracks of the COCO suite
of challenges, including instance segmentation, bounding-
box object detection, and person keypoint detection. With-
out bells and whistles, Mask R-CNN outperforms all ex-
isting, single-model entries on every task, including the
COCO 2016 challenge winners. We hope our simple and
effective approach will serve as a solid baseline and help
ease future research in instance-level recognition. Code
has been made available at: https://github.com/
facebookresearch/Detectron.

1. Introduction

The vision community has rapidly improved object de-
tection and semantic segmentation results over a short pe-
riod of time. In large part, these advances have been driven
by powerful baseline systems, such as the Fast/Faster R-
CNN [12, 36] and Fully Convolutional Network (FCN) [30]
frameworks for object detection and semantic segmenta-
tion, respectively. These methods are conceptually intuitive
and offer flexibility and robustness, together with fast train-
ing and inference time. Our goal in this work is to develop a
comparably enabling framework for instance segmentation.

Instance segmentation is challenging because it requires
the correct detection of all objects in an image while also
precisely segmenting each instance. It therefore combines
elements from the classical computer vision tasks of ob-
Ject detection, where the goal is to classify individual ob-
jects and localize each using a bounding box, and semantic

Figure 1. The Mask R-CNN framework for instance segmentation.

segmentation, where the goal is to classify each pixel into
a fixed set of categories without differentiating object in-
stances.! Given this, one might expect a complex method
is required to achieve good results. However, we show that
a surprisingly simple, flexible, and fast system can surpass
prior state-of-the-art instance segmentation results.

Our method, called Mask R-CNN, extends Faster R-CNN
[36] by adding a branch for predicting segmentation masks
on each Region of Interest (Rol), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1). The mask branch is a small FCN applied
to each Rol, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
enabling a fast system and rapid experimentation.

In principle Mask R-CNN is an intuitive extension of
Faster R-CNN, yet constructing the mask branch properly
is critical for good results. Most importantly, Faster R-
CNN was not designed for pixel-to-pixel alignment be-
tween network inputs and outputs. This is most evident in
how RolPool [18, 12], the de facto core operation for at-
tending to instances, performs coarse spatial quantization
for feature extraction. To fix the misalignment, we pro-
pose a simple, quantization-free layer, called RolAlign, that
faithfully preserves exact spatial locations. Despite being

IFollowing common terminology, we use object detection to denote
detection via bounding boxes, not masks, and semantic segmentation to
denote per-pixel classification without differentiating instances. Yet we
note that instance segmentation is both semantic and a form of detection.

https://arxiv.org/abs/1703.06870




Panoptic Segmentation

Instance detection panoptic segmentation:
stuff and things are solved, instances distinguishable



Unified Panoptic Segmentation Network (UPSNet)

Backbone Network Sema.ntic —_
logits
Semantic .
Head
T 1 | Class L Panoptic —
Head

T —_ 1 —I::Box

Instance
] — ) Head / Mask logits

_ Panoptic
| _/ logits
Image FPN Feature \ ’ }
v ’ Pixel-wise Classification

Unified Backbone Network



1tyscapes




Depth Perception




3D scene understanding
N the deep net era




N the deep learning era

Ground truth is collected by
using traditional methods



3D In the deep learning era

Data

LLearner
. N
{X(@)7 y(@) }7;:1
| = Objective
scale invariant MSE in log space
Regular old
Hypothesis space — f SUPGTWS'ed
Deep Neural Network learning!
Optimizer f* = arg min L(f(xD),y)
=

SGD




3D In the deep learning era

Teacher

_/f;f//

Student




Scale invariant error

With uncalibrated cameras (unknown K), the global scale of a scene
IS an “ambiguity” in depth prediction.

... you could learn estimate K from a single image ...



Scale invariant error

Estimate log depth instead of depth. Defining y; as the ground truth depth on
pixel i, and y”; its estimated depth:

1 n
Standard L2 error: DLz(ya y$) — = Z (lOg yi T IOg yi*)z
& =1

Scale invarianterror:  [) KY) — l N 1 o 1 S 2\ )2
(¥, y*) = . (logy; — logy* + a(y, y*))
=1

K 1 Y °K
i a(y,y*) = — ) (logy; — log y*)
j=1

[Eigen & Fergus, NIPS, 2014]



Training:

* Training loss: Mixture of both error measures (best \lambda=0.5):

Standard L2 error: Scale invariant error:

J = ADp5(y, y*) + (1 = A)Dg(y, y*)

Depth contains missing values. Only evaluate on valid pixels.

R e e

 Data augmentation: flips, translations, scalings, color scalings, ...

[Eigen & Fergus, NIPS, 2014]
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Kinect Is a stereo active system that uses
structured light

Ground truth is collected by
using traditional methods
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Learning Single-View Depth Prediction from Internet Photos

MegaDepth: Learning Single-View Depth Prediction from Internet Photos

Zhengqi Li

Noah Snavely

Department of Computer Science & Cornell Tech, Cornell University

Abstract

Single-view depth prediction is a fundamental problem
in computer vision. Recently, deep learning methods have
led to significant progress, but such methods are limited by
the available training data. Current datasets based on 3D
sensors have key limitations, including indoor-only images
(NYU), small numbers of training examples (Make3D), and
sparse sampling (KITTI). We propose to use multi-view In-
ternet photo collections, a virtually unlimited data source,
to generate training data via modern structure-from-motion
and multi-view stereo (MVS) methods, and present a large
depth dataset called MegaDepth based on this idea. Data
derived from MVS comes with its own challenges, includ-
ing noise and unreconstructable objects. We address these
challenges with new data cleaning methods, as well as auto-
matically augmenting our data with ordinal depth relations
generated using semantic segmentation. We validate the use
of large amounts of Internet data by showing that models
trained on MegaDepth exhibit strong generalization—not
only to novel scenes, but also to other diverse datasets in-
cluding Make3D, KITTI, and DIW, even when no images
from those datasets are seen during training.’

1. Introduction

Predicting 3D shape from a single image is an important
capability of visual reasoning, with applications in robotics,
graphics, and other vision tasks such as intrinsic images.
While single-view depth estimation is a challenging, un-
derconstrained problem, deep learning methods have re-
cently driven significant progress. Such methods thrive when
trained with large amounts of data. Unfortunately, fully gen-
eral training data in the form of (RGB image, depth map)
pairs is difficult to collect. Commodity RGB-D sensors
such as Kinect have been widely used for this purpose [34],
but are limited to indoor use. Laser scanners have enabled
important datasets such as Make3D [29] and KITTI [25],
but such devices are cumbersome to operate (in the case
of industrial scanners), or produce sparse depth maps (in

161}

"Project website: http://www.cs.cornell.edu/project
megadepth/

’
/

(b) Image from Make3D

(e) Image from KITTI
-

— o

(f) Our single-view depth prediction

Figure 1: We use large Internet image collections, combined
with 3D reconstruction and semantic labeling methods, to
generate large amounts of training data for single-view depth
prediction. (a), (b), (e): Example input RGB images. (c),
(d), (f): Depth maps predicted by our MegaDepth-trained
CNN (blue=near, red=far). For these results, the network
was not trained on Make3D and KITTI data.

the case of LIDAR). Moreover, both Make3D and KITTI
are collected in specific scenarios (a university campus, and
atop a car, respectively). Training data can also be generated
through crowdsourcing, but this approach has so far been
limited to gathering sparse ordinal relationships or surface
normals [12, 4, 5].

In this paper, we explore the use of a nearly unlimited
source of data for this problem: images from the Internet
from overlapping viewpoints, from which structure-from-

(a) Image (b) GT (c) VGG*

(d) VGG* (M)

(e) ResNet () ResNet (M) (g) HG (h) HG (M)

Figure 6: Depth predictions on MD test set. (Blue=near, red=far.) For visualization, we mask out the detected sky region.
In the columns marked (M), we apply the mask from the GT depth map (indicating valid reconstructed depths) to the prediction
map, to aid comparison with GT. (a) Input photo. (b) Ground truth COLMAP depth map (GT). VGG™ prediction using the loss
and network of [6]. (d) GT-masked version of (c). (e) Depth prediction from a ResNet [19]. (f) GT-masked version of (e). (g)
Depth prediction from an hourglass (HG) network [4] . (h) GT-masked version of (g).

Training set Method RMS AbsRel logl0
Make3D Karsch et al. [16] 9.20 0.355 0.127
Liu et al. [24] 9.49 0.335 0.137
Liu et al. [22] 8.60 0.314 0.119
Li et al. [20] 7.19 0.278 0.092
Laina et al. [19] 4.45 0.176 0.072
Xu et al. [39] 4.38 0.184 0.065
NYU Eigen et al. [6] 6.89 0.505 0.198
Liu et al. [22] 7.20 0.669 0.212
Laina et al. [19] 7.31 0.669 0.216
KITTI Zhou et al. [43] 8.39 0.651 0.231
Godard et al. [13] 9.88 0.525 0.319
DIW Chen et al. [4] 7.25 0.550 0.200
MD Ours 6.23 0.402 0.156
MD+Make3D  Ours 4.25 0.178 0.064

Table 4: Results on Make3D for various training datasets
and methods. The first column indicates the training
dataset. Errors for “Ours™ are averaged over four models
trained/validated on MD. Lower is better for all metrics.

depth predictions from our model and several other non-
Make3D-trained models. Our network trained on MD have
the best performance among all non-Make3D-trained models.
Finally, the last row of Table 4 shows that our model fine-
tuned on Make3D achieves better performance than the state-
of-the-art.

KITTI. Next, we evaluate our model on the KITTI test set

[Fe——
(a) Image (b) GT (c) DIW [4] (d) NYU [6] (e) KITTI[13] (f) MD

Figure 7: Depth predictions on Make3D. The last four
columns show results from the best models trained on non-
Make3D datasets (final column is our result).

based on the split of [7]. As with our Make3D experiments,
we do not use images from KITTI during training. The
KITTI dataset is very different from ours, consisting of driv-
ing sequences that include objects, such as sidewalks, cars,
and people, that are difficult to reconstruct with SfM/MVS.
Nevertheless, as shown in Table 5, our MD-trained network
still outperform approaches trained on non-KITTI datasets.
Finally, the last row of Table 5 shows that we can achieve
state-of-the-art performance by fine-tuning our network on
KITTI training data. Figure 8 shows visual comparisons
between our results and models trained on other non-KITTI

CVPR 2018



tructure from motion (stereo but with many cameras

The Internet can be an unlimited source of 3D data
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MegaDepth dataset

200 locations, ~130k images
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Stacked hourglass architecture

Stacked Hourglass Networks for

\O
= Human Pose Estimation o -
(\l ’__._,.——-—-“-\ "..-“ ‘-\\\ "’.—-" ‘\\ ”‘_ \\\
) - ~ " -
-
'—: Alejandro Newell, Kaiyu Yang, and Jia Deng
=
O University of Michigan, Ann Arbor
N {alnewell,yangky, jiadeng}@umich.edu
1
> Abstract. This work introduces a novel convolutional network archi- = |l | [ || | .. 11|11 | ..o, | B B B D TR RS 4 R ) LA L N I BRI SRR
tecture for the task of human pose estimation. Features are processed | [l | | ||  }"" /" \ 77 2 i '
I I

f across all scales and consolidated to best capture the various spatial re-
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N is critical to improving the performance of the network. We refer to the
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Fig. 1. Our network for pose estimation consists of multiple stacked hourglass modules
which allow for repeated bottom-up, top-down inference.

1 Introduction

A key step toward understanding people in images and video is accurate pose
estimation. Given a single RGB image, we wish to determine the precise pixel
location of important keypoints of the body. Achieving an understanding of a
person’s posture and limb articulation is useful for higher level tasks like ac-
tion recognition, and also serves as a fundamental tool in fields such as human-
computer interaction and animation.




MegabDepth results
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MegabDepth results

Palace of Fine Arts, San Francisco Big Ben, London Pike Place Market, Seattle

Source: http://www.cs.cornell.edu/projects/megadepth/



3D In the deep learning era

Teacher

What else can we
use as teacher?

SGD

_/_;f//

Student




How else can we collect depth?




“Unsupervised”

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou* Matthew Brown
UC Berkeley Google
Abstract

We present an unsupervised learning framework for the
task of monocular depth and camera motion estimation
from unstructured video sequences. In common with re-
cent work [10, 14, 16], we use an end-to-end learning ap-
proach with view synthesis as the supervisory signal. In
contrast to the previous work, our method is completely un-
supervised, requiring only monocular video sequences for
training. Our method uses single-view depth and multi-
view pose networks, with a loss based on warping nearby
views to the target using the computed depth and pose. The
networks are thus coupled by the loss during training, but
can be applied independently at test time. Empirical eval-
uation on the KITTI dataset demonstrates the effectiveness
of our approach: 1) monocular depth performs comparably
with supervised methods that use either ground-truth pose
or depth for training, and 2) pose estimation performs fa-
vorably compared to established SLAM systems under com-
parable input settings.

1. Introduction

Humans are remarkably capable of inferring ego-motion
and the 3D structure of a scene even over short timescales.
For instance, in navigating along a street, we can easily
locate obstacles and react quickly to avoid them. Years
of research in geometric computer vision has failed to
recreate similar modeling capabilities for real-world scenes
(e.g., where non-rigidity, occlusion and lack of texture are
present). So why do humans excel at this task? One hypoth-
esis is that we develop a rich, structural understanding of the
world through our past visual experience that has largely
consisted of moving around and observing vast numbers of
scenes and developing consistent modeling of our observa-
tions. From millions of such observations, we have learned
about the regularities of the world—roads are flat, buildings
are straight, cars are supported by roads erc., and we can
apply this knowledge when perceiving a new scene, even
from a single monocular image.

*The majority of the work was done while interning at Google.
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(a) Training: unlabeled video clips.

Depth CNN

Target view

(b) Testing: single-view depth and multi-view pose estimation.
Figure 1. The training data to our system consists solely of un-
labeled image sequences capturing scene appearance from differ-
ent viewpoints, where the poses of the images are not provided.
Our training procedure produces two models that operate inde-
pendently, one for single-view depth prediction, and one for multi-
view camera pose estimation.

In this work, we mimic this approach by training a model
that observes sequences of images and aims to explain its
observations by predicting likely camera motion and the
scene structure (as shown in Fig. 1). We take an end-to-
end approach in allowing the model to map directly from
input pixels to an estimate of ego-motion (parameterized as
6-DoF transformation matrices) and the underlying scene
structure (parameterized as per-pixel depth maps under a
reference view). We are particularly inspired by prior work
that has suggested view synthesis as a metric [-}] and recent
work that tackles the calibrated, multi-view 3D case in an
end-to-end framework [10]. Our method is unsupervised,
and can be trained simply using sequences of images with
no manual labeling or even camera motion information.

Our approach builds upon the insight that a geomet-
ric view synthesis system only performs consistently well
when its intermediate predictions of the scene geometry
and the camera poses correspond to the physical ground-
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Figure 4. Network architecture for our depth/pose/explainability prediction modules. The width and height of each rectangular block indi-
cates the output channels and the spatial dimension of the feature map at the corresponding layer respectively, and each reduction/increase
in size indicates a change by the factor of 2. (a) For single-view depth, we adopt the DispNet [ 5] architecture with multi-scale side pre-
dictions. The kernel size is 3 for all the layers except for the first 4 conv layers with 7, 7, 5, 5, respectively. The number of output channels
for the first conv layer is 32. (b) The pose and explainabilty networks share the first few conv layers, and then branch out to predict 6-DoF
relative pose and multi-scale explainability masks, respectively. The number of output channels for the first conv layer is 16, and the kernel
size is 3 for all the layers except for the first two conv and the last two deconv/prediction layers where we use 7, 5, 5, 7, respectively. See

Section 3.5 for more details.

network’s belief in where direct view synthesis will be success-
fully modeled for each target pixel. Based on the predicted Es,
the view synthesis objective is weighted correspondingly by

L= Y Y E@LH)-LEI. ©
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Since we do not have direct supervision for Es, training with the
above loss would result in a trivial solution of the network always
predicting E to be zero, which perfectly minimizes the loss. To
resolve this, we add a regularization term ETGQ(ES) that encour-
ages nonzero predictions by minimizing the cross-entropy loss
with constant label 1 at each pixel location. In other words, the
network is encouraged to minimize the view synthesis objective,
but allowed a certain amount of slack for discounting the factors
not considered by the model.

3.4. Overcoming the gradient locality

One remaining issue with the above learning pipeline is that the
gradients are mainly derived from the pixel intensity difference be-
tween I (p,) and the four neighbors of I(p.), which would inhibit
training if the correct ps (projected using the ground-truth depth
and pose) is located in a low-texture region or far from the current
estimation. This is a well known issue in motion estimation [].
Empirically, we found two strategies to be effective for overcom-
ing this issue: 1) using a convolutional encoder-decoder architec-
ture with a small bottleneck for the depth network that implicitly
constrains the output to be globally smooth and facilitates gradi-
ents to propagate from meaningful regions to nearby regions; 2)

explicit multi-scale and smoothness loss (e.g., as in [, 16]) that
allows gradients to be derived from larger spatial regions directly.
We adopt the second strategy in this work as it is less sensitive to
architectural choices. For smoothness, we minimize the L; norm
of the second-order gradients for the predicted depth maps (similar
to [15]).

Our final objective becomes

['fz'nal = Z ‘C'i,vs + ’\S‘cimooth + Ae Z ‘CTeg (Ei) ’ (4)
1 s

where [ indexes over different image scales, s indexes over source
images, and A, and \. are the weighting for the depth smoothness
loss and the explainability regularization, respectively.

3.5. Network architecture

Single-view depth For single-view depth prediction, we adopt
the DispNet architecture proposed in [ 5] that is mainly based on
an encoder-decoder design with skip connections and multi-scale
side predictions (see Figure 4). All conv layers are followed by
ReLU activation except for the prediction layers, where we use
1/(a*sigmoid(z)+ ) witha = 10 and 3 = 0.1 to constrain the
predicted depth to be always positive within a reasonable range.
We also experimented with using multiple views as input to the
depth network, but did not find this to improve the results. This is
in line with the observations in [ 7], where optical flow constraints
need to be enforced to utilize multiple views effectively.
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Main idea: supervision by view synthesis

Source: Tinghui Zhou
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In this work, K is assumed to be known!
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Results

Garg et al. (pose sup.) Ours (unsupervised)

Ground-truth Eigen et al. (depth sup.)
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15. Scene Understanding

« Semantics
e Object detection
e Semantic segmentation
® |nstance segmentation
e Geometry
e 3D in the deep learning era
e Single view depth estimation

e Unsupervised learning of monocular depth cues



