Lecture 20 Image Synthesis

image **x** label y

image x

caption y

"A statuesque duck gazing gracefully over the water"

--- "positive"

sentence x

sentiment y

image **x** label y

Synthesis

label y

image **x**

Synthesis

User sketch Photo

Deep nets are data transformers

• Deep nets transform datapoints, layer by layer

• Each layer is a different representation of the data

Deep nets are data transformers

Deep nets transform datapoints, layer by layer

• Each layer is a different representation of the data

Generative modeling vs Representation learning

Representation learning:

mapping data to abstract representations (analysis)

Generative modeling:

mapping abstract representations to data (synthesis)

What can you do with generative models?

- 1. Image synthesis
- 2. Representation learning
- 3. Data translation

1. Image synthesis

- 2. Representation learning
- 3. Data translation

[Images: https://ganbreeder.app/]

Image synthesis

Procedural graphics

Ayliean @Ayliean · Nov 17

Made up a set of rules and rolled some dice to decide how this plant would grow. I never did get that five of a kind, as expected, but I was still hopeful!

1.1K **♥** 4.5K \triangle

Image synthesis from "noise"

Sampler
$$G: \mathcal{Z} \to \mathcal{X}$$

$$z \sim p(z)$$

$$x = G(z)$$

Learning a generative model

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

Learning a density model

Objective

Hypothesis space

Optimizer

Normalized distribution (some models output unormalized *energy functions*)

[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]

Case study #1: Fitting a Gaussian to data

fig from [Goodfellow, 2016]

Max likelihood objective

$$\max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}}[\log p_{\theta}(x)]$$

Considering only Gaussian fits

$$p_{\theta}(x) = \mathcal{N}(x; \mu, \sigma)$$
$$\theta = [\mu, \sigma]$$

Closed form optimum:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \quad \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \mu)^2$$

Case study #1: Fitting a Gaussian to data

Learner

Objective $\max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}} [\log p_{\theta}(x)]$

 $\text{Data} \rightarrow \text{Hypothesis space}$

$$p(x) = \mathcal{N}(x; \mu, \sigma)$$

Optimizer

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \quad \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \mu)^2$$

"max likelihood"

$$\begin{array}{c} \longrightarrow \\ \longrightarrow \\ p: \mathcal{X} \to [0, 1] \end{array}$$

Case study #2: learning a deep generative model

Learner

 $Data \rightarrow$

Objective Usually max likelihood

Hypothesis space
Deep net

Optimizer SGD

 $\begin{array}{c} \longrightarrow \\ \longrightarrow \\ p: \mathcal{X} \to [0, 1] \end{array}$

Case study #2: learning a deep generative model

Learner Objective Usually max likelihood Data Hypothesis space Deep net Optimizer SGD

Density $p: \mathcal{X} \rightarrow [0, 1]$ Sampler $G:\mathcal{Z} \to \mathcal{X}$ $z \sim p(z)$ x = G(z)

Models that provide a sampler but no density are called implicit generative models

Deep generative models are distribution transformers

Prior distribution Target distribution p(x)

Deep generative models are distribution transformers

Deep generative models are distribution transformers

Generative Adversarial Networks (GANs)

G tries to synthesize fake images that fool D

D tries to identify the fakes

$$\underset{D}{\operatorname{arg\,max}} \, \mathbb{E}_{\mathbf{z},\mathbf{x}} [\, \log D(G(\mathbf{z})) \, + \, \log (1 - D(\mathbf{x})) \,]$$

[Goodfellow et al., 2014]

G tries to synthesize fake images that fool D:

$$\underset{G}{\operatorname{arg}} \min_{G} \mathbb{E}_{\mathbf{z},\mathbf{x}} [\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x}))]$$

G tries to synthesize fake images that fool the best D:

$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{z},\mathbf{x}} [\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x}))]$$

Training

- G tries to synthesize fake images that fool D
- **D** tries to identify the fakes
- Training: iterate between training D and G with backprop.
- Global optimum when G reproduces data distribution.

Samples from BigGAN [Brock et al. 2018]

Generative Adversarial Network

Learner

Objective

 $\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{z},\mathbf{x}} \left[\log D(G(\mathbf{z})) + \log (1 - D(\mathbf{x})) \right]$

Hypothesis space Deep nets G and D

Optimizer
Alternating SGD on G and D

Critic

 $D: \mathcal{X} \to [0, 1]$

Sampler

 $G:\mathcal{Z} \to \mathcal{X}$

Latent space Data space (Natural image manifold) (Gaussian) [BigGAN, Brock et al. 2018]

Generative models organize the manifold of natural images

- 1. Image synthesis
- 2. Representation learning
- 3. Data translation

Representation learning

Autoencoder —> Generative model

Variational Autoencoders (VAEs)

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Prior distribution

Target distribution

Mixture of Gaussians

$$p_{\theta}(x) = \sum_{i=1}^{k} w_i \mathcal{N}(x; u_i, \Sigma_i)$$

Target distribution

$$x \sim p_{\text{data}}(x)$$

$$p_{\theta}(x)$$

Variational Autoencoders (VAEs)

[Kingma & Welling, 2014; Rezende, Mohamed, Wierstra 2014]

Prior distribution

Target distribution

Density model:

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$p(x|z;\theta) \sim \mathcal{N}(x; G_{\theta}^{\mu}(x), G_{\theta}^{\sigma}(x))$$

Sampling:

$$z \sim p(z) \quad \epsilon \sim \mathcal{N}(0, 1)$$

$$x = G^{\mu}_{\theta}(z) + G^{\sigma}_{\theta}(z)\epsilon$$

Variational Autoencoder (VAE)

Learner

Data

Objective
$$\max_{\theta} \mathbb{E}_{x \sim p_{\mathtt{data}}}[\log p_{\theta}(x)]$$

Hypothesis space

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$x = G^{\mu}_{\theta}(z) + G^{\sigma}_{\theta}(z)\epsilon$$

Density
$$p_{\theta}: \mathcal{X} \to [0, 1]$$

Sampler

$$G_{\theta}:\mathcal{Z} \to \mathcal{X}$$

Prior distribution

Current model of target distribution

In order to optimize our model, we need to measure the likelihood it assigns to each datapoint x

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$

$$= p(x|z^{(1)})p(z^{(1)})dz +$$

$$p(x|z^{(2)})p(z^{(2)})dz +$$

$$p(x|z^{(3)})p(z^{(3)})dz + \dots$$

Prior distribution

Current model of target distribution

In order to optimize our model, we need to measure the likelihood it assigns to each datapoint x

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$
$$= \sim 0+$$
$$\sim 0+$$
$$p(x|z^{(3)})p(z^{(3)})dz + \dots$$

Prior distribution

Current model of target distribution

If only we knew z*, we wouldn't need the integral...

$$p_{\theta}(x) = \int p(x|z;\theta)p(z)dz$$
$$\approx p(x|z^*;\theta)p(z^*)$$

Autoencoder!

Classical Autoencoder

Variational Autoencoder

$$\underset{G,E}{\operatorname{arg\,min}} \mathbb{E}_{x,\epsilon} [\|G(E(x+\epsilon)) - x\|_2^2 + \|E(x+\epsilon)\|_2^2]$$

Variational Autoencoder

- 1. Image synthesis
- 2. Representation learning
- 3. Data translation

Data Translation

Data translation problems ("structured prediction")

Semantic segmentation

[Long et al. 2015, ...]

Text-to-photo

"this small bird has a pink breast and crown..."

[Reed et al. 2014, ...]

Edge detection

[Xie et al. 2015, ...]

Future frame prediction

[Mathieu et al. 2016, ...]

G tries to synthesize fake images that fool D

D tries to identify the fakes

$$\underset{D}{\operatorname{arg\,max}} \ \mathbb{E}_{\mathbf{x},\mathbf{y}} [\ \log D(G(\mathbf{x})) \ + \ \log(1 - D(\mathbf{y})) \]$$

G tries to synthesize fake images that fool D:

$$\underset{G}{\operatorname{arg}} \quad \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

G tries to synthesize fake images that fool the best D:

$$\arg \min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

G's perspective: D is a loss function.

Rather than being hand-designed, it is *learned* and *highly structured*.

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

$$\operatorname{arg\,min\,max}_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

Data from [maps.google.com]

Input Output Groundtruth

Training data

[HED, Xie & Tu, 2015]

#edges2cats [Chris Hesse]

edges2cats

Ivy Tasi @ivymyt

Leveraging pretrained models for efficient data translation

The point of deep learning is to enable learning with little data

Foundation models

[Bommasani et al. 2021] https://arxiv.org/pdf/2108.07258.pdf

"If I have seen further it is by standing on the shoulders of Giants"

— Newton

[Blind Orion Searching for the Rising Sun by Nicolas Poussin, 1658]

1. Learn foundation model **encoders** and **decoders** for each domain

2. Plug them together to translate between modalities (may require finetuning)

[Radford et al., 2021] https://arxiv.org/pdf/2103.00020.pdf

[https://openai.com/blog/clip/]

New capabilities by plugging pretrained models together: CLIP+GAN

Code: https://colab.research.google.com/drive/1_4PQqzM_0KKytCzWtn-ZPi4cCa5bwK2F?usp=sharing

INPUT:

"A wide-eyed cat on the lookout for food"

Latent space Transformer

Text-to-image translation

INPUT:

"An illustration of a baby daikon radish in a tutu walking a dog"

New capabilities by just asking: product design

an armchair in the shape of an avocado, an armchair imitating an avocado, **TEXT PROMPT AI-GENERATED IMAGES**

New capabilities by just asking: image translation

TEXT PROMPT a photo of a phone from the ...

TEXT PROMPT a photo of a computer from the ...

DALL-E 2

a painting of water lilies in a new art style no human has ever seen before

Report issue 🏳

