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Identical local evidence...

-




...different interpretations




Information must propagate over
the image.

Local
information... ...must propagate

Probabilistic graphical models are a powerful tool for propagating
information within an image. And these tools are used everywhere
within computer vision now.



http://www.cvpapers.com/cvpr2014.html

From a random sample of 6
papers from CVPR 2014, halt

had figures that look like this...


http://www.cvpapers.com/cvpr2014.html
http://www.cvpapers.com/cvpr2014.html

Partial Optimality by Pruning for MAP-inference with General
Graphical Models, Swoboda et al

Figure 1. An exemplary graph con-
taining inside nodes (yellow with
crosshatch pattern) and boundary
nodes (green with diagonal pat-
tern). The blue dashed line en-
closes the set A. Boundary edges
are those crossed by the dashed line.

http://hci.awr.uni-heidelberg.de/Staff/bsavchyn/papers/swoboda-
GraphicalModelsPersistency-with-Supplement-cvpr2014.pdf
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http://hci.iwr.uni-heidelberg.de/Staff/bsavchyn/papers/swoboda-GraphicalModelsPersistency-with-Supplement-cvpr2014.pdf
http://hci.iwr.uni-heidelberg.de/Staff/bsavchyn/papers/swoboda-GraphicalModelsPersistency-with-Supplement-cvpr2014.pdf
http://hci.iwr.uni-heidelberg.de/Staff/bsavchyn/papers/swoboda-GraphicalModelsPersistency-with-Supplement-cvpr2014.pdf

Active flattening of curved document images via two
structured beams, Meng et al.
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Figure 5. The directed graph G for computing the correspondence
function. (a) discretization of the £ — s plane, (b) the constructed graph. All
the vertices of the graph locate in a parallelogram. The slops of its edges
are a and b, respectively.

file:///Users/billf/Downloads/dewarp high.pdf 9



A Mixture of Manhattan Frames: Beyond the Manhattan

World, Straub

et al
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Figure 3: Graphical model for a mixture of K’ MFs.

http://www.jstraub.de/download/straub2014mmf.pdf
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http://www.jstraub.de/download/straub2014mmf.pdf
http://www.jstraub.de/download/straub2014mmf.pdf

MRF nodes as patches

image patches

o o
~
-
»
- - -
N
o e
<N\ - »
e T —
L -
=Y ,':
Ly 7l ’ "
p. Y A
4 d :
» ' -
Srn T . ‘
oA & » )
L2y R e 4 y \
Wil A . v .
LY " ’
A%
\
)
-
' - /
\

Sbene




Super-resolution

* Image: low resolution 1image
* Scene: high resolution 1image

ultimate goal...

Scene




Pixel-based images
are not resolution
independent

Polygon-based
graphics
1mages are
resolution
independent

Pixel replication

Cubic spline,
sharpened

[ "9 Bl

Training-based
super-resolution
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3 approaches to perceptual

sharpening W
(1) Sharpening; boost existing high N

fl’e quenCle S. spatial frequency

amplitude

(2) Use multiple frames to obtain
higher sampling rate in a still framef%H

(3) Estimate high frequencies not
present 1n 1mage, although implicitly
defined.

In this talk, we focus on (3), which \ \

spatial frequency

we’ll call “super-resolution”. y

amplitude




Training images, ~100,000 image/scene patch pairs

Images from two Corel database categories:
“giraffes” and “urban skyline”.




Low-resolution

Do a first interpolation
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-~

Zoomed low-resolution Full frequency origin;l.

Low-resolution
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Representation

Zoomed low-freq.

Full freq. original
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Representation

Zoomed low-freq.

Full freq. original

. True high freqs

Low-band input \ & q

(contrast normalized, (to minimize the complexity of the relationships we have to learn,
PCA fitted) we remove the lowest frequencies from the inpud $mage,

and normalize the local contrast level).



Gather ~100,000 patches

E B B B N highfregs.

H H B 3 N
eoeo eoeo
EiENAT"REEN .«

raining data samples (magnified)

T
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Nearest neighbor estimate

Input low fregs.

° L Nt Age

» ‘e *

Estimated high fregs.

Training data samples (magnified)



Nearest neighbor estimate

Training data samples

~

magnified)



Example: mput image patch, and closest
matches from database

Input patch 5

s

ClOS@St lmage SRe 20 NE R Y208 NiMgebig 100 A2 RpeciEriaN X hpetAA | o4 gt 14 20N M R AR, 255 6 e 128131

patches from database 5 E T ; = 5

P | N"”h " 10 Ry 10 10 00 Benoe S BRI 01 Beoe [N NG 00D Reoe (218 10 A8 Romoe (103w
A =A%) Cea 7, 7 T 7,71 O 1. 71 ""Bf-wn T

Corresponding - “ - : :i = E

high-resolution =S ""““m B

patches from database = : : = =l e

pillls ms wm

“ulée.‘. *N‘-l.l':"ﬂ m-!mg&un ‘N‘va‘lg‘!ﬂ 0%?5‘.!“ ﬂ&.:li'&&l a-;-»“uv ﬁ“(ig.lﬁ

23



Image patch

Underlying candidate
scene patches. Each
renders to the image
patch.
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Scene-scene compatibility function,
- L
Pl x]-) e —
Assume overlapped regions, d, of hi-res.
patches differ by Gaussian observation noise:

o) —|d; —d; |? /207
\Ij(xz:xj) — €XP 7

Uniqueness constraint,

not smoothness. 5



Image-scene compatibility Ey

function, O(x, y.) | l
B

Assume Gaussian noise takes you from A
observed 1mage patch to synthetic sample:

2 2
_ —|y;—ylx;) |7 /207
O (x;,1;) = exp lyi—y(@i) [,
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Markov network




B ellef Prop a g ation After a few iterations of belief propagation, the

algorithm selects spatially consistent high resolution
interpretations for each low-resolution patch of the
input image.

Iter. 0

Iter. 1




Zooming 2 octaves

i : - We apply the super-resolution
algorithm recursively, zooming
up 2 powers of 2, or a factor of 4
in each dimension.

85 x 51 input

Cubic spline zoom to 340x204 Max. likelihood zoom to 340x204



Now we examine the effect of the prior
assumptions made about images on the
high resolution reconstruction.

First, cubic spline interpolation.

(cubic spline implies
thin plate prior)

Original
50x58

True
200x232
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(cubic spline implies
thin plate prior)

Original
50x58

True

Cubic spline 200x232
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Next, train the Markov network
algorithm on a world of random noise
images.

Original
50x58

True
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The algorithm learns that, in such a
world, we add random noise when zoom
to a higher resolution.

Original
50x58

Markov

True
network
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Next, train on a world of vertically
oriented rectangles.

Original
50x58




The Markov network algorithm
hallucinates those vertical rectangles that
it was trained on.

Original
50x58

Markov

True
network
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Now train on a generic collection of
images.

Original
50x58




The algorithm makes a reasonable guess
at the high resolution image, based on its
training images.

Original
50x58
Training images
Markov T
rue
network
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Generic training 1mages

Next, train on a generic
set of training images.
Using the same camera
as for the test image, but
a random collection of
photographs.
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Original
70x70

Markov

net,
training:
generic

True
280x280




Kodak Imaging Science Technology Lab test.
SR TR N

3 test images, 640x480, to be
zoomed up by 4 in each
dimension.

8 judges, making 2-alternative,
forced-choice comparisons.




Algorithms compared

* Bicubic Interpolation

e Mitra's Directional Filter
* Fuzzy Logic Filter
*Vector Quantization

* VISTA

41






Bicubic spline Altamira
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User preference test results

“The observer data indicates that six of the observers ranked

Freeman’s algorithm as the most preferred of the five tested
algorithms. However the other two observers rank Freeman’s algorithm
as the least preferred of all the algorithms....

Freeman’s algorithm produces prints which are by far the sharpest
out of the five algorithms. However, this sharpness comes at a price
of artifacts (spurious detail that is not present in the original

scene). Apparently the two observers who did not prefer Freeman’s
algorithm had strong objections to the artifacts. The other observers
apparently placed high priority on the high level of sharpness in the
images created by Freeman’s algorithm.”
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Supas-rasglution 200m

Saurce imane patchas

Bandpass filterad and
contrast namalized

Trua twgh resolution pixels

High rasclution pizels chossn
by super-resolution

Bandpass filtterad and contrast
narmahzed bast malch palchas
from tramning data

Hest match patches from
training data




Training 1mage

ANl ISl LU Srniiesog . o o
anelvacatedarul ingbythetes
Jztem, andsent i tdowntoanew
Finedastandardforweighing
=raproduct-bundl ingdeci=si
zottzaysthatthenewteature:
andperzonal identification:
azoft ' sview, butusersandth
adedw i thoonsumer innowvat iol
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Processed image




code available online

http://people.csail.mit.edu/billf/project%20pages/sresCode/
Markov%20Random%20Fields%20for%20Super-Resolution.html
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Markov Random Fields for Super-Resolution

‘ Willimn T. Freeman CeLin
M\wlnnlls Tnstitnte of Technolipy | Micisnofl Resezrch New Snglamd

[Cownload the package]

This is or irplemenlstion of the example.based super.sesclicn algoeitam of [1]. Alikorgh the sppiicaticns 50 MSFi hive now exterced beyend example.based saper resolulion aad wexrars synthesis, it is still
of preat value o ey sit this woblemy espexia’ly o share the sousce ouke and examplar insages with e reseancd Swnmamity W bape that this soltware peckage can eip to undenstand Makav vexkom fedds

Sor low-level vision, and to crcatc benchmark Sor superresolatian algorthms.,

When yoa refar o this code in your paper. pleese cie the fallowing book chapter:

W. T Treerar and O, Lu. Markov Randar Fields for Super-resclutien and Tecture Syathesis. In A. Dake, [ Koh'i, and C. Rather, eds., Adwances in Mooy Paudon Dields for Vision and beape
Erooossing, Chapter 10, MIT Prees, 2011, To appear.

Algorithm

1he core of the algonthm se tased 0a |1} We enllext pairs of Jow-108 and higk-res umags peichos roem § 300 OF ¥Nage: 85 raInng, AL input 10w-res 1mage 13 decompased 1o averlapping paki<s o0 s gnd, and
the infepence xodlem s to find e kigh-rs puches from e nening detdbuess for each low.pes paich. We wsr the kdetnoe algorithm, which hes bemn used for peulodme texoure synibesis [2], to recimve 1 setof
lhigh-cs, h-uxar st neigadons fov cecl low-res petcn Lestly, ac cun @ msas-product belxf propagation (BP) elgoeifun ) meininize 21 ol cctive fuexton al Lalances bod: local compatibalicy axd spaliad
sootkerss,

Examples

several examples 2t cpplying the example Besec super resdlutadn code m the podke£o are shown below. Lhese dxxmplar imapes are also neluded 1 the paekage. Unos you rur “he oode, it should give you the
same result

We first apply biewdic samping 1w ealarge the input image (3) by @ facser oF 4 (b), wher intage detai’s are missing 17 we use the near1 wighdoe for ¢cach low-res parch ndependently, w> obigin Righ-rs bu!
noisy resnlx e (). Toacdness thic issoe, we incorpornting spatia’ aronitbaess inx a Murkov Randors Fizds frrabnica by enfrcing the syrthesired neiphhoring paiches o sgree oa the overliqperd areas
Max-produs: ddicf propageiion is 2363 to 02iain high-wes irwges in (d), The i forred high-frequency insagss are skown in (¢), end the original kigh-res arc shown in (7).
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