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Chapter 28

Probabilistic graphical models

Probabilistic graphical models describe joint probability distributions in a modular way
that allows us to reason about the visual world even when we’re modeling very complicated
situations. These models are useful in vision, where we often need to exploit modularity to
make computations tractable.

A probabilistic graphical model is a graph that describes a class of probability distribu-
tions sharing a common structure. The graph has nodes, drawn as circles, indicating the
variables of the joint probability. It has edges, drawn as lines connecting nodes to other
nodes. At first, we’ll restrict our attention to a type of graphical model called undirected, so
the edges are line segments without arrowheads.

The edges indicate the conditional independence structure of the nodes of the graph.
If there is no edge between two nodes, then the variables described by those nodes are
independent, if you condition on the values of intervening nodes in any path between them
in the graph. If two nodes do have a line between them, then we cannot assume they are
independent. We introduce this through a set of examples.
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6 CHAPTER 28. PROBABILISTIC GRAPHICAL MODELS

28.1 Simple Examples

Here is the simplest probabilistic graphical model:

(28.1)
This “graph” is just a single node for the variable x1. There is no restriction imposed by the
graph on the functional form of its probability function. In keeping with notation we’ll use
later, we write that the probability distribution over x1, P (x1) = φ1(x1).

Another trivial graphical model is this:

(28.2)
Here, the lack of a line connecting x1 with x2 indicates a lack of statistical dependence
between these two variables. In detail, we condition on knowing the values of any connecting
neighbors of x1 and x2–in this case there are none–and thus x1 and x2 are statistically
independent. Because of that independence, the joint probability depicted by this graphical
model must be a product of each variable’s marginal probability and thus must have this
form: P (x1, x2) = φ1(x1)φ2(x2).

Let’s add a line between these two variables:

(28.3)
By that graph, we mean that there may be a statistical dependency between the two variables.
The class of probability distributions depicted here is now more general than the one above,
and we can only write that the joint probability as some unknown function of x1 and x2,
P (x1, x2) = φ12(x1, x2). This graph offers no simplification from the most general probability
function of two variables.

Here is a graph with some structure:

(28.4)
This graph means that if we condition on the variable x2, then x1 and x3 are independent.
A general form for P (x1, x2, x3) that guarantees such conditional independence is

P (x1, x2, x3) = φ12(x1, x2)φ23(x2, x3). (28.5)

Note the conditional independence implicit in Eq. (28.5): if the value of x2 is given (indicated
by the solid circle in the graph below), then the joint probability of Eq. (28.5) becomes a
product of some function f(x1) times some other function g(x3), revealing the conditional
independence of x1 and x3. Graphically, we denote the conditioning on the variable x2 with
a filled circle for that node:

(28.6)
In the next chapter, we’ll exploit that structure of the joint probability to perform inference
efficiently using belief propagation.

A celebrated theorem, the Hammersley-Clifford theorem [Besag1974], tells the form
the joint probability must have for any given graphical model. The joint probability for a



28.1. SIMPLE EXAMPLES 7

probabilistic graphical model must be a product of functions of each the “maximal cliques”
of the graph. Here we define the terms.

A clique is any set of nodes where each node is connected to every other node in the
clique. These graphs illustrate the clique property:

(28.7)
A maximal clique is a clique that can’t include more nodes of the graph without losing

the clique property. The sets of nodes below form maximal cliques (left), or do not (right):

(28.8)
The Hammersley-Clifford theorem [Hammersley and Clifford1971]: A positive prob-

ability distribution has the independence structure described by a graphical model if and
only if it can be written as a product of functions over the variables of each maximal clique:

P (x1, x2, . . . , xN ) =
∏
xc∈xi

Ψc(xc), (28.9)

where the product is over all maximal cliques xc in the graph, xi.
In the example of the graph 28.4, the maximal cliques are (x1, x2) and (x2, x3), so the

Hammersley-Clifford theorem says that the corresponding joint probability must be of the
form of Eq. (28.5).

Now we examine some graphical model structures that are especially useful in vision. In
perception problems, we typically have both observed and unobserved variables. The graph
below shows a simple “Markov chain” [Gagniuc2017] structure with 3 observed variables,
shaded, labeled yi, and 3 unobserved variables, labeled xi:

(28.10)
This is a chain because the variables form a linear sequence. It’s Markov because the hid-
den variables have the Markov property: conditioned on x2, variable x3 is independent of
variable x1. The joint probability of all the variables shown here is P (x1, x2, x3, y1, y2, y3) =
φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3). Using P (a, b) = P (a|b)P (b), we can also
write the probability of the x variables conditioned on the observations y,

P (x1, x2, x3|y1, y2, y3) =
1

P (y)
φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3). (28.11)
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(For brevity, we write P (y) for P (y1, y2, y3).) Thus, to form the conditional distribution,
within a normalization factor, we simply include the observed variable values into the joint
probability. For vision applications, we often use such Markov chain structures to describe
events over time.

To capture relationships over space, a 2-d structure is useful, called a Markov random
field, or MRF [A Blake2011]:

(28.12)
Then the joint probability over all the variables factorizes into this product:

P (x|y) =
1

P (y)

∏
(i,j)

φij(xi, xj)
∏
i

ψi(xi, yi), (28.13)

where the first product is over all spatial neighbors i and j, and the second product is over
all nodes i.

(a) (b) (c)

Figure 28.1: (a) A local region of an image to be segmentated (b) Enlarged region (c)
Visualization of a MRF of nodes corresponding to image pixels. The internal states of
the nodes are indicator variables of segment membership. A hypothetical most probable
configuration of the indicator variables are shown as the filled color of each node’s circle.

An example of how Markov random field models are applied to images is depicted in
Fig. 28.1. (a) and (b) show a small image region and its context in the image. (c) shows
an MRF with each node corresponding to a pixel of the image region. The states of an
MRF can be indicator variables of image segment membership for each pixel. The states of
a hypothetical most-probable configuration of this MRF are shown as the color of each node
in this illustration.
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28.2 Directed graphical models

In addition to undirected graphical models, another type of graphical model is commonly
used. Directed graphical models [Koller and Friedman2009] describe factorizations of
the joint probability into products of conditional probability distributions. Each node in a
directed graph contributes a well-specified factor in the joint probability: the probability of
its variable, conditioned all the variables originating arrows pointing into it. So this graph:

(28.14)
denotes the joint probability,

P (x1, x2, x3) = P (x2)P (x1|x2)P (x3|x2) (28.15)

The general rule for writing the joint probability described by a directed graph is this:
Each node, xn, contributes the factor P (xn|xΞ), where Ξ is the set of nodes with arrows
pointing in to node xn. You can verify that Eq. 28.15 follows this rule. Directed graphical
models are often used to describe causal processes.



Chapter 29

Inference in graphical models

Given a probabilistic graphical model and observations, we want to estimate the states of
the unobserved variables. For example, given image observations, we want to estimate the
pose of the person. The belief propagation algorithm lets us do that efficiently.

Recall the Bayesian inference task: our observations are the elements of a vector, y, and
we seek to infer the probability P (x|y) of some scene parameters, x, given the observations.
By Bayes’ rule, we have

P (x|y) =
P (y|x)P (x)

P (y)
(29.1)

The likelihood term P (y|x) describes how a rendered scene x generates observations y. The
prior probability, P (x), tells the probability of any given scene x occurring. For inference,
we often ignore the denominator, P (y), called the evidence, as it is constant with respect to
the variables we seek to estimate, x.

Typically, we make many observations, y, of the variables of some system, and we want
to find the the state of some hidden variable, x, given those observations. The posterior
probability, P (x|y), tells us the probability for any value of the hidden variables, x. From
this posterior probability, we often want some single best estimate for x, denoted x̂ and called
a point estimate.

Selecting the best estimate x̂ requires specifying a penalty for making a wrong guess. If we
penalize all wrong answers equally, the best strategy is to guess the value of x that maximizes
the posterior probability, P (x|y) (because any other explanation x̂ for the observations y
would be less probable). That is called the MAP estimate, for maximum a posteriori.

But we may want to penalize wrong answers as a function of how far they are from the
correct answer. If that penalty function is the squared distance in x, then the point estimate
that minimizes the average value of that error is called the minimum mean squared error
estimate, or MMSE. To find this estimate, we seek the x̂ that minimizes the squared error,
weighted by the probability of each outcome:

x̂MMSE = argminx̃

∫
x

P (x|y)(x− x̃)′(x− x̃)dx (29.2)

Differentiating with respect to x to solve for the stationary point, the global minimum for
this convex function, we find

x̂MMSE =

∫
x

xP (x|y)dx. (29.3)

Thus, the minimum mean square error estimate, x̂MMSE , is the mean of the posterior distri-
bution. If x represents a discretized space, then the marginalization integrals over dx become
sums over the corresponding discrete states of x.

For now, we’ll assume we seek the MMSE estimate. By the properties of the multi-variate
mean, to find the mean at each variable, or node, in a network, we can first find the marginal
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probability at each node, then compute the mean of each marginal probability. In other
words, given P (x|y), we will compute P (xi|y), where i is the ith hidden node. From P (xi|y)
it is simple to compute the posterior mean at node i.

For the case of discrete variables, we compute the marginal probability at a node by
summing over the states at all the other nodes,

P (xi|y) =
∑
j\i

∑
xj

P (x1, x2, . . . , xi, . . . , xN |y), (29.4)

where the notation j\i means ”all possible values of j except for j = i”.

29.1 Simple example of inference in a graphical model

To gain intuition, let’s calculate the marginal probability for a simple example. Consider the
three-node Markov chain of 28.10, reproduced here.

(29.5)
Vision tasks this can apply to include modeling the probability of a pixel belonging to an
object edge, given the evidence, observations y, at a point and two neighboring locations.
The inferred states x could be a label indicating the presence of an edge.

We seek to marginalize the joint probability in order to find the marginal probability at
node 1, P (x1|y), given obervations y1, y2, and y3, which we denote as y. We have, assuming
the nodes have discrete states,

P (x1|y) =
∑
x2

∑
x3

P (x1, x2, x3|y) (29.6)

Here’s the main point: If we knew nothing about the structure of the joint probability
P (x1, x2, x3|y), the computation would require |x|3 computations: a double-sum over all x2

and x3 states must be computed for each possible x1 state. (We’re denoting the number of
states of any of the x variables as |x|). In the more general case, for a Markov chain of N
nodes, we would need |x|N summations to compute the desired marginal at any node of the
chain. Such a computation quickly becomes intractable as N grows.

But we can exploit the model’s structure to avoid the exponential growth of the com-
putation with N . Substituting the joint probability, from the graphical model, into the
marginalization equation, Eq. (29.6), gives

P (x1|y) =
1

P (y)

∑
x2

∑
x3

φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3) (29.7)

This form for the joint probability reveals that not every variable is coupled to every other
one. We can pass summations through variables they don’t sum over, letting us compute the
marginalization much more efficiently. This will make only a small difference for this short
chain, but it makes a huge difference for longer ones. So we write

P (x1|y) =
1

P (y)

∑
x2

∑
x3

φ12(x1, x2)φ23(x2, x3)ψ1(y1, x1)ψ2(y2, x2)ψ3(y3, x3) (29.8)

=
1

P (y)
ψ1(y1, x1)

∑
x2

φ12(x1, x2)ψ2(y2, x2)
∑
x3

φ23(x2, x3)ψ3(y3, x3) (29.9)
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Figure 29.1: Summary of the messages (partial sums) for a simple belief propagation example.

That factorization of Eq. (29.9) is the key step: It reduces the number of terms summed
from order |x|3 to order 2|x|2 for this chain, and for a chain of length N chain, from order
|x|N to order (N − 1)|x|2, a huge computational savings for large N.

The partial sums of Eq. (29.9) are named “messages” because they pass information from
one node to another. We call the message from node 3 to node 2, m32(x2) =

∑
x3
φ23(x2, x3)m63(x3).

The other partial sum is the message from node 2 to node 1, m21(x1) =
∑
x2
φ12(x1, x2)m52(x2)m32(x2).

Note that the messages are always messages about the states of the node that the message is
being sent to–the arguments of the message mij are the states xj of node j. The algorithm
corresponding to Eq. (29.9) is called belief propagation.

Eq. (29.9) gives us the marginal probability at node 1. To find the marginal probability
at another node, you can write out the sums over variables needed for that node, pass the
sums through factors in the joint probability that they don’t operate on, to come up with an
efficient reorganization of summations analogous to Eq. (29.9). You would find that many
of the summations from marginalization at the node x1 would need to be recomputed for
the marginalization at node x2. That motivates storing and reusing the messages, which the
belief propagation algorithm does in an optimal way.

29.2 Belief propagation (BP)

For more complicated graphical models, we want to replace the manual factorization with
an automatic procedure for identifying the computations needed for marginalizations and to
cache them efficiently. Belief propagation does that by identifying those reusable sums, the
“messages”.

29.2.1 Derivation of message-passing rule

We’ll describe belief propagation (BP) only for the special case of graphical models with pair-
wise potentials. The clique potentials between neighboring nodes are ψij(xj , xi). Extensions
to higher-order potentials is straightforward. (Convert the graphical model into one with
only pairwise potentials. This can be done by augmenting the state of some nodes to encom-
pass several nodes, until the remaining nodes only need pairwise potential functions in their
factorization of the joint probability.) You can find formal derivations of belief propagation
in [Jordan1998, Koller and Friedman2009].

Consider Fig. 29.2, showing a section of a general network with pair-wise potentials.
There is a network of N + 1 nodes, numbered 0 through N and we will marginalize over
nodes x1 . . . xN . Fig. 29.2 (a) shows the marginalization equation for a network of variables
with discrete states. (For continuous variables, integrals replace the summations). If we
assume the nodes form a tree, we can distribute the marginalization sum past nodes for
which the sum is a constant value to obtain the sums depicted in Fig. 29.2 (b).
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We define a belief propagation message:
A message mij, from node i to node j, is the sum of the probability over all

states of all nodes in the subtree that leaves node i and does not include node j.
Referring to Fig. 29.2, (a) shows the desired marginalization sum over a network of

pairwise cliques. (This approach can be extended to more general cliques). We can pass
the summations over node states through nodes that are constant over those summations,
arriving at the factorization shown in (b). Remembering that the message from node i to
node j is the sum over the tree leaving node i, we can then read-off the recursive belief
propagation message update rule by inspecting Fig. 29.2:

To compute the message from node j to node i:

1. Multiply together all messages coming in to node j, except for the message from node
i back to node j,

2. Multiply by the pairwise compatibility function ψij(xi, xj).

3. Marginalize over the variable xj .

These steps are summarized in this equation to compute the message from node j to node i:

mji(xi) =
∑
xj

ψij(xi, xj)
∏

k∈η(j)\i
mkj(xj) (29.10)

where η(j)\i means “the neighbors of node j except for node i”. Figure 29.3 shows this
equation in a graphical form. Any local potential functions φj(xj) are treated as an additional
message into node j, m0j(xj) = φj(xj). For the case of continuous variables, the sum over
the states of xj in Eq. (29.10) is replaced by an integral over the domain of xj .

As mentioned above, BP messages are partial sums in the marginalization calculation.
The arguments of messages are always the state of the node that the message is going to.
(Belief propagation follows the “nosey neighbor rule” (from Brendan Frey, U. Toronto).
Every node is a house in some neighborhood. Your nosey neighbor says to you: “given what
I’ve seen myself and everything I’ve heard from my neighbors, here’s what I think is going on
inside your house.” That metaphor made sense to me after my children became teenagers.)

29.2.2 Marginal probability

The marginal probability at a node i, Eq. (29.4), is the sum over the joint probabilities of
all states except those of xi. Because we assume the network has no loops, the conditional
independence structure assures us that marginal probability at a node i is the product of the
sum of all states of all nodes in each sub-tree connected to node i. (Conditioned on node
i, the probabilities within each subtree are independent). Thus the marginal probability at
node i is the product of all the incoming messages:

Pi(xi) =
∏
j∈η(i)

mji(xi) (29.11)

(We include the local clique potential at node i, ψi(xi), as one of the messages in the product
of all messages into node i).

29.2.3 Message update sequence

To find all the messages, how do we invoke the recursive BP update rule, Eq. (29.10)? We
can apply Eq. (29.10) whenever all the incoming messages in the BP update rule are defined.
If there are no incoming messages to a node, then its outgoing message is well-defined in the
update rule. This lets us start the recursive algorithm.

A node can send a message whenever all the incoming messages it needs have been
computed. We can compute the outgoing messages from leaf nodes in the graphical model
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x0

Σx1...xN

x1 xp−1 xp

xp+1

xq

(a)

x0

Σx1...xp−1

x1 xp−1 xp

Σxp
xp+1

Σxp+1...xq−1

xqΣxq...xN

(b)

Figure 29.2: Generic example motivating the formula for belief propagation.(a) shows the
marginalization for a general graph with no loops, focussing on the partial sums at note xp.
(b) Shows how the partial sums distribute over the nodes. Note that, by the definition of
a message, mp+1,p and mqp correspond to these partial sums over nodes indicated in the
graph: mp+1,p =

∑
xp+1...xq−1

and mqp =
∑
xq...xN

. Marginalization over the states of all

nodes leaving node p, not including node p−1, leads to Eq. (29.10) for the belief propagation
message passing rule.

mji(xi)

=

Φij(xi, xj)

xj

xi x

mk1j(xj)

.*

mk2j(xj)

.*

mk3j(xj)

.* . . .

Figure 29.3: Pictorial depiction of belief propagation message passing rules of Eq. (29.10),
showing the vector and matrix shapes. To send a message from node j to node i: We term-by-
term multiply (shown by .*) the messages (column vectors) coming in to node j, then matrix
multiply (shown by x) the resulting column vector by the compatibility matrix Φij(xi, xj)
to obtain mji(xi).
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Figure 29.4: To compute the marginal probability at node i, we multiply together all the
incoming messages at that node: Pi(xi) =

∏
j∈η(i)mji(xi), remembering to include any local

potential terms φi(xi) as another message.

(a) (b) (c)

Figure 29.5: Example of a synchronous parallel update schedule for BP message passing.
Whenever any node has the required incoming messages needed to send an outgoing message,
it does. (a) At the first iteration, only the leaf nodes have the needed incoming messages
to send an outgoing message (by definition, leaf nodes have no links other than the one
on which they’ll be sending their outgoing message, so they have no incoming messages to
wait for). (b) second iteration, (c) third iteration. By the third iteration, every edge has
messages computed in both directions, and we can now compute the marginal probability at
every node in the graph.

tree, since they have no incoming messages other than from the node to which they are
sending a message, which doesn’t enter in the outgoing message computation. Two natural
message passing protocols are consistent with that rule: depth-first update, and parallel
update. In depth-first update, one node is arbitrarily picked as the root. Messages are then
passed from the leaves of the tree (leaves, relative to that root node) up to the root, then
back down to the leaves. In parallel update, at each turn, every node sends every outgoing
message for which it has received all the necessary incoming messages. Figure 29.5 depicts
the flow of messages for the parallel, synchronous update scheme.

Note that, when computing marginals at many nodes, we re-use messages with the BP al-
gorithm. A single message-passing sweep through all the nodes lets us calculate the marginal
at any node (using the depth-first update rules to calculate the marginal at the root node).
A second sweep from the root node back to all the leaf nodes calculates all the messages
needed to find the marginal probability at every node. It takes only twice the number of
computations to calculate the incoming messages to every node as it does to calculate the
incoming messages at a single node.
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(a) (b) (c) (e)

Figure 29.6: Example of a depth-first update schedule for BP message passing. We
arbitrarily select one node as the root. (a) Messages begin at the leaves and (b) proceed
to the root. Once all the messages reach the designated root node, (c) an outgoing sweep
computes the remaining messages, (d) ending at the leaf nodes.
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29.2.4 Example belief propagation application: stereo

Assume that we want to compute the depth from a stereo image pair, such as the pair shown
in (a) and (b) in Fig. 29.7, and with their insets marked with the red rectangles, shown in (c)
and (d). Assume that the two images have been rectified, as described in Chapter (stereo),
and consider the common scanline, marked in each of (c) and (d) with a black horizontal
line. The luminance intensities of each scanline are plotted in Fig. 29.8. Most computer
vision stereo algorithms [Scharstein and Szeliski2002] examine multiple scanlines to compute
the depth at every pixel, but to illustrate a simple example of belief propagation in vision,
we will consider the stereo vision problem while considering only one scanline pair at a time.

The graphical model that describes this stereo depth reconstruction for a single scanline
is shown in Fig. 29.9. Each unfilled circle in the graphical models represents the unknown
depth of each pixel in the scan line of one of the stereo images, in this example, the left
camera image in Fig. 29.7, (c). The open circles mean that the depth of each pixels is an
unobserved variable.

The intensity values of the left and right camera scan lines are used to compute the local
evidence for the disparity offset, d[i, j], of each right camera pixel corresponding to the left
image pixel at each right camera position, [i, j]. For this example, we assume that each right
camera pixel value, xr is that of a corresponding left camera value, xl, but with independent,
identically distributed (IID) Gaussian random noise added. This leads to a simple formula
for the local evidence, ψi, for the given depth value of any pixel,

ψi = P (d[i, j]|xr, xl) = ke−
∑i=10
i=−10

(xr [i,j]−xl[i−d[i,j],j])
2

2σ2 (29.12)

For simplicity in this example, we discretize the xr to xl disparity offset into 4 different bins,
each 45 disparity offsets wide. For simplicity, we add the local disparity evidence over the 45
depth states, then normalize the sum at each n to maintain a probability distribution. The
resulting local evidence matrix, for each of the 4 depth states, at each left camera spatial
position, is displayed in the 3rd row of Fig. 29.10. The intensities in each column in the
third-row image add-up to one.

The prior probability of any configuration of pixel disparity states is described by setting
the compatibility matrices, φ[si, si+1] of the Markov chain of Fig. 29.9. For this example, we
use a compatibility matrix referred to as the Potts Model [Wu1982]:

φ[si, si+1] =

{
1, if si = si+1

δ, otherwise
(29.13)

For this example, we used δ = 0.001
We then ran BP, Eq. 29.10 in a depth-first update schedule. For this network, that

involves two linear sweeps over all the nodes of the chain, first from left to right, then from
right to left. Starting from the left-most node, we updated the rightward messages one node
at a time, in a rightward sweep, then, starting from the right-most node, updated all the
leftward messages one node at a time, in a leftward sweep.

Once all the messages were computed, we used Eq. 29.11 to find the posterior marginal
probability at each node. The local evidence, the leftward and rightward messages, and the
final marginal probability at each node are displayed for every left-camera pixel of the inset.
The four rows of each display in subimages (c)-(f) correspond to the four possible depth
states used for this calculation. Note that for this scanline, in this image pair, there is a
depth discontinuity at location of the red vertical mark in Fig. 29.10–the canoe is closer
to the camera than the ground beyond the canoe that appears to the right of the canoe.
The local evidence for depth disparity, (c), is rather inaccurate, but the marginal posterior
probability accurately finds the depth discontinuity at the canoe boundary.
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(a) (b)

(c) (d)

Figure 29.7: (a) left camera image and (b) right camera image. (c) and (d): insets showing
areas of analysis.

(a)

(b)

Figure 29.8: (a) and (b) show the luminance traces from the scanlines marked in black in
Fig. 29.7 (c) and (d), respectively.

Figure 29.9: Graphical model for the posterior probability for stereo disparity offset between
the left and right camera views from a stereo rig.
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Figure 29.10: Belief propagation applied to graphical model, Fig. 29.9, for the stereo problem.
(a) and (b): left and right camera views. The luminance values covered by the black line
in each figure is the stereo observation for this example. (c) is the average over a depth
range of the local evidence for a given depth offset disparity. (d) and (e) show the local
messages computed in the belief propagation algorithm at each position. (f) shows the final
marginalized posterior probability at each pixel of the left camera. Note that the belief
propagation algorithm accurately finds the position of the depth discontinuity.
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29.3 Loopy belief propagation

The BP message update rules only work to give the exact marginals when the topology of
the network is that of a tree or a chain. In general, one can show that exact computation of
marginal probabilities for graphs with loops depends on a graph-theoretic quantity known
as the treewidth of the graph. For many graphical models of interest in vision, such as 2-d
Markov Random Fields related to images, these quantities can be intractably large.

But the message update rules are described locally, and one might imagine that it is a
useful local operation to perform, even without the global guarantees of ordinary BP. It turns
out that is true. Here is the algorithm: loopy belief propagation algorithm

1. convert graph to pairwise potentials

2. initialize all messages to all ones, or to random values between 0 and 1.

3. run the belief propagation update rules of Sect. 29.2.1 until convergence.

One can show that, in networks with loops, fixed points of the belief propagation al-
gorithm (message configurations where the messages don’t change with a message update)
correspond to minima of a well-known approximation from the statistical physics community
known as the Bethe free energy [Yedidia et al.2001]. In practice, the solutions found by the
loopy belief propagation algorithm are often quite good [Kevin Murphy1999].

29.4 MAP estimation and energy models

Instead of summing over the states of other nodes, we are sometimes interested in finding
the x that maximizes the joint probability. The argmax operator passes through constant
variables just as the summation sign did. This leads to an alternate version of the belief
propagation algorithm, Eq. (29.10), with the summation (of multiplying the vector message
products by the node compatibility matrix) replaced with “argmax”. This is called the “max-
product” version of belief propagation, and it computes an MAP estimate of the hidden
states.

Improvements have been developed over loopy belief propagation for the case of MAP
estimation, see, for example, tree-reweighted belief propagation [Kolmogorov2006] and graph
cuts [Zabih and Komogorov2004].
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Figure 29.11: Undirected graphical model used in belief propagation example

29.4.1 Numerical example of Belief Propagation

Here we work though a numerical example of belief propagation. To make the arithmetic
easy, we’ll solve for the marginal probabilities in the graphical model of two-state (0 and 1)
random variables shown in Fig. 29.11. That graphical model has 3 hidden variables, and one
variable observed to be in state 0. The compatibility matrices are given in the arrays below
(for which the state indices are 0, then 1, reading from left to right and top to bottom).

ψ12(x1, x2) =

(
1.0 0.9
0.9 1.0

)
(29.14)

ψ23(x2, x3) =

(
0.1 1.0
1.0 0.1

)
(29.15)

ψ42(x2, y2) =

(
1.0 0.1
0.1 1.0

)
(29.16)

Note that in defining these potential functions, we haven’t taken care to normalize the
joint probability, so we’ll need to normalize each marginal probability at the end. (remember
P (x1, x2, x3, y2) = ψ42(x2, y2)ψ23(x2, x3)ψ12(x1, x2), which should sum to 1 after summing
over all states.)

For this simple toy example, we can tell what results to expect by inspection, then verify
that BP is doing the right thing. Node x2 wants very much to look like y2 = 0, because
ψ42(x2, y2) contributes a large valued to the posterior probability when x2 = y2 = 1 or when
x2 = y2 = 0. From ψ12(x1, x2) we see that x1 has a very mild preference to look like x2.
So we expect the marginal probability at node x2 will be heavily biased toward x2 = 0, and
that node x1 will have a mild preference for state 0. ψ23(x2, x3) encourages x3 to be the
opposite of x2, so it will be biased toward the state x3 = 1.

Let’s see what belief propagation gives. We’ll follow the parallel, synchronous update
scheme for calculating all the messages. The leaf nodes can send messages along their edges
without waiting for any messages to be updated. For the message from node 1, we have

m12(x2) =
∑
x1

ψ12(x1, x2) (29.17)

=

(
1.0 0.9
0.9 1.0

)(
1
1

)
(29.18)

=

(
1.9
1.9

)
(29.19)

= k

(
1
1

)
(29.20)

For numerical stability, we typically normalize the computed messages in Eq. (29.10) so
the entries sum to 1, or so their maximum entry is 1, then remember to renormalize the
final marginal probabilities to sum to 1. Here, we’ve normalized the messages for simplicity,
(absorbing the normalization into a constant, k).
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The message from node 3 to node 2 is

m32(x2) =
∑
x3

ψ32(x2, x3) (29.21)

=

(
0.1 1.0
1.0 0.1

)(
1
1

)
(29.22)

=

(
1.1
1.1

)
(29.23)

= k

(
1
1

)
(29.24)

We have a non-trivial message from observed node y2 (node 4) to the hidden variable x2:

m42(x2) =
∑
x4

ψ42(x2, y2) (29.25)

=

(
1.0 0.1
0.1 1.0

)(
1
0

)
(29.26)

=

(
1.0
0.1

)
(29.27)

where y2 has been fixed to y2 = 0, thus restricting ψ42(x2, y2) to just the first column.
Now we just have two messages left to compute before we have all messages computed

(and therefore all node marginals computed from simple combinations of those messages).
The message from node 2 to node 1 uses the messages from nodes 4 to 2 and 3 to 2:

m21(x1) =
∑
x2

ψ12(x1, x2)m42(x2)m32(x2) (29.28)

=

(
1.0 0.9
0.9 1.0

)[(
1.0
0.1

)
. ∗
(

1
1

)]
=

(
1.09
1.0

)
(29.29)

The final message is that from node 2 to node 3 (since y2 is observed, we don’t need to
compute the message from node 2 to node 4). That message is:

m23(x3) =
∑
x2

ψ23(x2, x3)m42(x2)m12(x2) (29.30)

=

(
0.1 1.0
1.0 0.1

)[(
1.0
0.1

)
. ∗
(

1
1

)]
=

(
0.2
1.01

)
(29.31)

Now that we’ve computed all the messages, let’s look at the marginals of the three hidden
nodes. The product of all the messages arriving at node 1 is just the one message, m21(x1),
so we have (introducing constant k to normalize the product of messages to be a probability
distribution)

P1(x1) = km21(x1) =
1

2.09

(
1.09
1.0

)
(29.32)

As we knew it should, node 1 shows a slight preference for state 0.
The marginal at node 2 is proportional to the product of 3 messages. Two of those are

trivial messages, but we’ll show them all for completeness:

P2(x2) = km12(x2)m42(x2)m32(x2) (29.33)

= k

(
1
1

)
. ∗
(

1.0
0.1

)
. ∗
(

1
1

)
(29.34)

=
1

1.1

(
1.0
0.1

)
(29.35)
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As expected, belief propagation reveals a strong bias for node 2 being in state 0.
Finally, for the marginal probability at node 3, we have

P3(x3) = km23(x3) =
1

1.21

(
0.2
1.01

)
(29.36)

As predicted, this variable is biased toward being in state 1.
By running belief propagation within this tree, we have computed the exact marginal

probabilities at each node, reusing the intermediate sums across different marginalizations,
and exploiting the structure of the joint probability to perform the computation efficiently.
If nothing were known about the joint probability structure, the marginalization cost would
grow exponentially with the number of nodes in the network. But if the graph structure
corresponding to the joint probability is known to be a chain or a tree, then the marginal-
ization cost only grows linearly with the number of nodes, and is quadratic in the node
state dimensions. The belief propagation algorithm enables inference in many large-scale
problems.
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