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Today’s lecture:  Spatial Filtering

Today: 


• Fourier transforms and signal processing, continued


• Fourier processing by human visual system


• Spatial digital filters

Problem set 1 due today.  Problem set 2 out today (due Thursday of next week).


This week:  Tuesday:  spatial filtering.  Thursday: temporal filtering


Next week:  no class Tuesday, then on Thursday:  image pyramids.



The Discrete Fourier transform
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2D Discrete Fourier Transform (DFT) transforms an image f [n,m] into F [u,v] as:

F[u, v] =
N−1

∑
n=0

M−1

∑
m=0

f[n, m] exp (−2πj ( un
N

+
vm
M ))



The inverse Discrete Fourier transform
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2D Discrete Fourier Transform (DFT) transforms an image f [n,m] into F [u,v] as:

F[u, v] =
N−1

∑
n=0

M−1

∑
m=0

f[n, m] exp (−2πj ( un
N

+
vm
M ))

The inverse of the 2D DFT is:

f[n, m] =
1

NM

N−1

∑
n=0

M−1

∑
m=0

F[u, v] exp (+2πj ( un
N

+
vm
M ))



Visualizing the image Fourier transform
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 Using the real and imaginary components:

Or using a polar decomposition:

The values of F [u,v] are complex.

Amplitude Phase

F[u, v] =
N−1

∑
n=0

M−1

∑
m=0

f[n, m] exp (−2πj ( un
N

+
vm
M ))



Simple Fourier transforms
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DFT (amplitude)

64x64 pixels

Image

n

m
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v
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-u0
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-v0
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Images are 64x64 pixels. The wave is a cosine, therefore DFT phase is zero.

Simple Fourier transforms
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Now, an analogous sequence of images, but selecting 
Fourier components in descending order of magnitude.
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1025
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2049
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4097
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8193
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16385
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32769
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65536

23



The DFT Game: find the right pairs

A B C

1 2 3

fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size)

Images

DFT 
magnitude
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The DFT Game: find the right pairs

(Solution in the class notes)



26

DFT

DFT-1

DFT squared 
magnitude 

(contrast 
compressed 
for visibility)

Retain Fourier 
components 

corresponding to 
the repeating 

columns
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DFT

DFT-1

Remove Fourier 
components 

corresponding to 
the repeating 

columns



Some visual areas…

From M. Lewicky
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Campbell & Robson chart

Let’s define the following image:

With:

What do you think you should see when looking at this image?

n
m





Contrast Sensitivity Function
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Blackmore & Campbell (1969)
Maximum sensitivity 

~ 6 cycles / degree of visual angle

Low High

Things far away 
are hard to see

Things that are very close 
and/or large are hard to see
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Vasarely visual illusion
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+ -
-

-
-

Frequency filtering of human visual system

Center-surround 
spatial filtering of 
human visual system 
is subtracting less 
positive intensity at 
the corners, giving a 
bright line there

Input visual stimulus bandpass filtered output



  Today: A collection of useful filters
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Low-pass filters High-pass filters
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Low pass-filters



Box filter
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2N+1

2M+1

1 1 … 1
1 1 1
1 1 1
…
1 1 1 1

n

h[n]

n=0

with N=1



Box filter
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=1
21X21

256X256 256X256

What does it do? 
• Replaces each pixel with an average of its neighborhood 
• Achieve smoothing effect (remove sharp features)

mean

mean



Box filter
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The box filter is separable as it can be written as the convolution of two 1D kernels

1 
1 
1

1  1 =
1  1 
1  1 
1  1



Box filter
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256X256

1
21

256X256

1
21

Requires N+N sums, instead of N*N



Box filter
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If you convolve two boxes:

1  1  11  1  1 = 1  2  3  2  1

=

The convolution of two box filters is not another box filter. 
It is a triangular filter.



Gaussian filter
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In the continuous domain:



Gaussian filter

44

Discretization of the Gaussian:
 At 3σ  the amplitude of the Gaussian is around 1% of its central value



Scale
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Gaussian filter for low-pass filtering
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Dali



Properties of the Gaussian filter

•  The n-dimensional Gaussian is the only completely 
circularly symmetric operator that is separable. 

• The (continuous) Fourier transform of a Gaussian is 
another Gaussian
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Properties of the Gaussian filter

• The convolution of two n-dimensional Gaussians is 
an n-dimensional Gaussian.
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 where the variance of the result is the sum

(it is easy to prove this using the FT of the Gaussian)



Discretization of the Gaussian

There are very efficient approximations to the Gaussian 
filter for certain values of σ with nicer properties than 
when working with discretized gaussians.
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Binomial filter

Binomial coefficients provide a compact approximation of 
the gaussian coefficients using only integers. 

   

50

The simplest blur filter (low pass) is 

Binomial filters in the family of filters obtained as 
successive convolutions of [1 1]

[1  1]



Binomial filter
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[1 1]    [1 1] = [1 2 1]

[1 1]    [1 1]    [1 1] = [1 3 3 1]

b1  =  [1  1]

b2  =

b3  =



Binomial filter
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Properties of binomial filters

• Sum of the values is 2n 

• The variance of bn is 
• The convolution of two binomial filters is 

also a binomial filter
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With a variance:

These properties are analogous to the gaussian property in the continuous 
domain (but the binomial filter is different than a discretization of a 
gaussian)



B2[n]
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 The simplest approximation to the Gaussian filter is the 3-tap kernel:



B2[n] versus the 3-tap box filter
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[1  2  1]

[1  1  1]

Which one is better?



B2[n]

56

[…, 0, 0, 0, 0, 0, 0, …][1, 2, 1]   […, 1, -1, 1, -1, 1, -1, …]  =  

[…, -1, 1, -1, 1, -1, 1, …][1, 1, 1]   […, 1, -1, 1, -1, 1, -1, …]  =  



B2[n]
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What about the opposite of blurring?
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-
+

-

Gaussian filter

Laplacian filter
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-

Laplacian filter

Gaussian filter

+ =



Hybrid Images
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Oliva & Schyns



Hybrid Images
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62

=+



Hybrid Images
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64



65http://cvcl.mit.edu/hybrid_gallery/gallery.html
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High pass-filters



Finding edges in the image
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Image gradient:

Approximation image derivative:

Edge strength

Edge orientation:

Edge normal:



[-1 1]
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g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]



[-1 1]T
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g[m,n]

h[m,n]

=

f[m,n]

[-1, 1]T



Discrete derivatives
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Discrete derivatives
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=

=



Discrete derivatives
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=

=



Can you go from the derivatives  
back to the original image?

73

?



Reconstruction from 2D derivatives

74

[-1 1]

[-1 1]T

c

c

=
c

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.



Reconstruction from 2D derivatives
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[1 -1]

[1 -1]T



Editing the edge image
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[1 -1]

[1 -1]T



Thresholding edges
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Issues with image derivatives

• Derivatives are sensitive to noise


• If we consider continuous image derivatives, they might not be defined in 
some regions (e.g., object boundaries, …)
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Derivatives
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We want to compute the image derivative:

If there is noise, we might want to “smooth” it with a blurring filter

But derivatives and convolutions are linear and we can move them 
around:



Gaussian derivatives
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The continuous derivative is:



Gaussian Scale

81
σ=2 σ=4 σ=8



Derivatives of Gaussians: Scale
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σ=2 σ=4 σ=8



Orientation

83



Orientation

84What about other orientations not axis aligned?



Any orientation can be computed as a linear combination of two filtered images

The smoothed directional gradient is a linear combination of two kernels

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation
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cos(α) +sin(α) =

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation

86



Discretization Gaussian derivatives
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There are many discrete approximations. For instance, we can take 
samples of the continuous functions. In practice it is common to use 
the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with [1, -1]

 [1, -1]



Discretization 2D Gaussian derivatives
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As Gaussians are separable, we can approximate two 1D derivatives 
and then convolve them. 

One example is the  Sobel-Feldman operator:



n-th order Gaussian derivatives
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n-th order Gaussian derivatives
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Gaussian



n-th order Gaussian derivatives
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Gaussian



n-th order Gaussian derivatives
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Gaussian



n-th order Gaussian derivatives
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Gaussian



Image sharpening filter
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Image sharpening filter
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Subtract away the blurred components of the image:

This filter has an overall DC component of 1. It de-emphasizes 
the blur component of the image (low spatial frequencies).
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Input image Sharpened
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Input image Sharpened
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Input image


