

Today’s lecture: Spatial Filtering

Problem set 1 due today. Problem set 2 out today (due Thursday of next week).
This week: Tuesday: spatial filtering. Thursday: temporal filtering
Next week: no class Tuesday, then on Thursday: image pyramids.
Today:

- Fourier transforms and signal processing, continued
- Fourier processing by human visual system
- Spatial digital filters

The Discrete Fourier transform

2D Discrete Fourier Transform (DFT) transforms an image $f[n, m]$ into $F[u, v]$ as:

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

The inverse Discrete Fourier transform

2D Discrete Fourier Transform (DFT) transforms an image $f[n, m]$ into $F[u, v]$ as:

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

The inverse of the 2D DFT is:

$$
f[n, m]=\frac{1}{N M} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} F[u, v] \exp \left(+2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

Visualizing the image Fourier transform

$$
F[u, v]=\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \exp \left(-2 \pi j\left(\frac{u n}{N}+\frac{v m}{M}\right)\right)
$$

The values of $F[u, v]$ are complex.

Using the real and imaginary components:

$$
F[u, v]=\operatorname{Re}\{F[u, v]\}+j \operatorname{Imag}\{F[u, v]\}
$$

Or using a polar decomposition:

$$
F[u, v]=A[u, v] \exp (j \theta[u, v])
$$

Simple Fourier transforms

$$
\cos \left(2 \pi\left(\frac{u_{0} n}{N}+\frac{v_{0} m}{M}\right)\right) \quad \longleftrightarrow \frac{1}{2}\left(\delta\left[u-u_{0}, v-v_{0}\right]+\delta\left[u+u_{0}, v+v_{0}\right]\right)
$$

Simple Fourier transforms

Images are 64 x 64 pixels. The wave is a cosine, therefore DFT phase is zero.

3

Now, an analogous sequence of images, but selecting Fourier components in descending order of magnitude.

5

17

33

65

129


```
File Edit Yiew Insert Iools Desktop Window Help
```


\#1: Range $[0,1]$ Dims [256, 256]

129

\#2: Range [4.79e-005, 1.27] Dims [256, 256]

257

513

1025

2049

4097

8193

16385

32769

65536

The DFT Game: find the right pairs

The DFT Game: find the right pairs

(Solution in the class notes)

Retain Fourier components

|||||||||||||

Figure 1. Stimulus presentation scheme. The stimuli were originally calibrated to be seen at a distance of 150 cm in a $19^{\prime \prime}$ display.

Campbell \& Robson chart

Let's define the following image:

What do you think you should see when looking at this image?
$\mathbf{I}[n, m]=A[n] \sin (2 \pi f[m] m / M)$

Contrast Sensitivity Function

Blackmore \& Campbell (1969)
Maximum sensitivity
~ $\mathbf{6}$ cycles / degree of visual angle

Things that are very close and/or large are hard to see

Things far away are hard to see
$1234567891011121314151617181920$

Vasarely visual illusion

Input visual stimulus

Frequency filtering of human visual system

bandpass filtered output

Center-surround spatial filtering of human visual system is subtracting less positive intensity at the corners, giving a bright line there

Today: A collection of useful filters

Low-pass filters

High-pass filters

Low pass-filters

Box filter

$$
\begin{aligned}
& h_{N, M}[n, m]= \begin{cases}1 & \text { if }-N \leq n \leq N \text { and }-M \leq m \leq M \\
0 & \text { otherwise }\end{cases} \\
& \text { (n=0 }
\end{aligned}
$$

Box filter

256X256

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Box filter

The box filter is separable as it can be written as the convolution of two 1D kernels

$$
h_{N, M}[n, m]=h_{N, 0} \circ h_{0, M}
$$

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned} \quad \bigcirc \quad 1 \quad 1 \quad \begin{array}{lll}
1 & \begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}
\end{array}
$$

Box filter

Requires $\mathrm{N}+\mathrm{N}$ sums, instead of $\mathrm{N}^{*} \mathrm{~N}$

Box filter

If you convolve two boxes:

$$
111 \bigcirc 111=12321
$$

The convolution of two box filters is not another box filter. It is a triangular filter.

Gaussian filter

In the continuous domain:

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

Discretization of the Gaussian:
At 3σ the amplitude of the Gaussian is around 1% of its central value

$$
g[m, n ; \sigma]=\exp -\frac{m^{2}+n^{2}}{2 \sigma^{2}}
$$

Scale

$g[m, n ; \sigma]=\exp -\frac{m^{2}+n^{2}}{2 \sigma^{2}}$

Gaussian filter for low-pass filtering

Properties of the Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

- The n-dimensional Gaussian is the only completely circularly symmetric operator that is separable.
- The (continuous) Fourier transform of a Gaussian is another Gaussian

$$
G(u, v ; \sigma)=\exp -2 \pi^{2}\left(u^{2}+v^{2}\right) \sigma^{2}
$$

Properties of the Gaussian filter

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

- The convolution of two n-dimensional Gaussians is an n-dimensional Gaussian.

$$
g\left(x, y ; \sigma_{1}\right) \circ g\left(x, y ; \sigma_{2}\right)=g\left(x, y ; \sigma_{3}\right)
$$

where the variance of the result is the sum

$$
\sigma_{3}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}
$$

(it is easy to prove this using the FT of the Gaussian)

Discretization of the Gaussian

There are very efficient approximations to the Gaussian filter for certain values of σ with nicer properties than when working with discretized gaussians.

$$
g_{5}[n]=[0.0183,0.3679,1.0000,0.3679,0.0183]
$$

Binomial filter

Binomial coefficients provide a compact approximation of the gaussian coefficients using only integers.

The simplest blur filter (low pass) is
$\left[\begin{array}{ll}1 & 1\end{array}\right]$
Binomial filters in the family of filters obtained as successive convolutions of [1 1]

Binomial filter

$$
\begin{gathered}
\mathrm{b}_{1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
\mathrm{b}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \circ\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \\
\mathrm{b}_{3}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \circ\left[\begin{array}{ll}
1 & 1
\end{array}\right] \circ\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 3
\end{array}\right]
\end{gathered}
$$

Binomial filter

Properties of binomial filters

- Sum of the values is 2^{n}
- The variance of b_{n} is $\sigma^{2}=n / 4$
- The convolution of two binomial filters is also a binomial filter

$$
b_{n} \circ b_{m}=b_{n+m}
$$

With a variance:

$$
\sigma_{n}^{2}+\sigma_{m}^{2}=\sigma_{n+m}^{2}
$$

These properties are analogous to the gaussian property in the continuous domain (but the binomial filter is different than a discretization of a

B2[n]

The simplest approximation to the Gaussian filter is the 3-tap kernel:

$$
b_{2}=[1,2,1]
$$

B2[n] versus the 3 -tap box filter

Which one is better?

B2[n]

$[1,1,1] \circ[\ldots, 1,-1,1,-1,1,-1, \ldots]=[\ldots,-1,1,-1,1,-1,1, \ldots]$
$[1,2,1] \circ[\ldots, 1,-1,1,-1,1,-1, \ldots]=[\ldots, 0,0,0,0,0,0, \ldots]$

B2[n]

$$
b_{2,2}=b_{2,0} \circ b_{0,2}=\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] \circ\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

What about the opposite of blurring?

Laplacian filter

Gaussian filter

Hybrid Images

Oliva \& Schyns

Hybrid Images

Hybrid Images

Copyright © 2007 Aude Oliva, MIT

High pass-filters

Finding edges in the image

Image gradient:

$$
\nabla \mathbf{I}=\left(\frac{\partial \mathbf{I}}{\partial x}, \frac{\partial \mathbf{I}}{\partial y}\right)
$$

Approximation image derivative:

$$
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
$$

Edge strength

$$
E(x, y)=|\nabla \mathbf{I}(x, y)|
$$

Edge orientation:

$$
\theta(x, y)=\angle \nabla \mathbf{I}=\arctan \frac{\partial \mathbf{I} / \partial y}{\partial \mathbf{I} / \partial x}
$$

Edge normal: $\quad \mathbf{n}=\frac{\nabla \mathbf{I}}{|\nabla \mathbf{I}|}$

$$
\begin{gathered}
{\left[\begin{array}{cc}
-1 & 1
\end{array}\right]} \\
\frac{\partial \mathbf{I}}{\partial x} \simeq \mathbf{I}(x, y)-\mathbf{I}(x-1, y)
\end{gathered}
$$

$\mathrm{g}[\mathrm{m}, \mathrm{n}]$
© $\quad[-1,1]$
$\mathrm{h}[\mathrm{m}, \mathrm{n}]$

$\mathrm{f}[\mathrm{m}, \mathrm{n}]$

$\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$

$\mathrm{g}[\mathrm{m}, \mathrm{n}]$

f[m,n]

Discrete derivatives

$$
\begin{aligned}
& d_{0}=[1,-1] \\
& \qquad f \circ d_{0}=f[n]-f[n-1] \\
& d_{1}=[1,0,-1] / 2 \\
& \quad f \circ d_{1}=\frac{f[n+1]-f[n-1]}{2}
\end{aligned}
$$

Discrete derivatives

Discrete derivatives

Can you go from the derivatives back to the original image?

Reconstruction from 2D derivatives

In 2D, we have multiple derivatives (along n and m)

and we compute the pseudo-inverse of the full matrix.

Reconstruction from 2D derivatives

Editing the edge image

Thresholding edges

Issues with image derivatives

- Derivatives are sensitive to noise
- If we consider continuous image derivatives, they might not be defined in some regions (e.g., object boundaries, ...)

Derivatives

We want to compute the image derivative:
$\frac{\partial f(x, y)}{\partial x}$
If there is noise, we might want to "smooth" it with a blurring filter $\frac{\partial f(x, y)}{\partial x} \circ g(x, y)$

But derivatives and convolutions are linear and we can move them around:

$$
\frac{\partial f(x, y)}{\partial x} \circ g(x, y)=f(x, y) \circ \frac{\partial g(x, y)}{\partial x}
$$

Gaussian derivatives

$$
g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}}
$$

The continuous derivative is:

$$
\begin{aligned}
g_{x}(x, y ; \sigma) & =\frac{\partial g(x, y ; \sigma)}{\partial x}= \\
& =\frac{-x}{2 \pi \sigma^{4}} \exp -\frac{x^{2}+y^{2}}{2 \sigma^{2}} \\
& =\frac{-x}{\sigma^{2}} g(x, y ; \sigma)
\end{aligned}
$$

Gaussian Scale

Derivatives of Gaussians: Scale

Orientation

$$
\begin{aligned}
& g_{x}(x, y)=\frac{\partial g(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& g_{y}(x, y)=\frac{\partial g(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Orientation

$$
g_{x}(x, y)=\frac{\partial g(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} g_{y}(x, y)=\frac{\partial g(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

What about other orientations not axis aligned?

Orientation

$$
g_{x}(x, y)=\frac{\partial g(x, y)}{\partial x}=\frac{-x}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} g_{y}(x, y)=\frac{\partial g(x, y)}{\partial y}=\frac{-y}{2 \pi \sigma^{4}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

The smoothed directional gradient is a linear combination of two kernels

$$
u^{T} \nabla g \otimes I=\left(\cos (\alpha) g_{x}(x, y)+\sin (\alpha) g_{y}(x, y)\right) \otimes I(x, y)=
$$

Any orientation can be computed as a linear combination of two filtered images

$$
=\cos (\alpha) g_{x}(x, y) \otimes I(x, y)+\sin (\alpha) g_{y}(x, y) \otimes I(x, y)
$$

Orientation

Discretization Gaussian derivatives

There are many discrete approximations. For instance, we can take samples of the continuous functions. In practice it is common to use the discrete approximation given by the binomial filters.

Convolving the binomial coefficients with $[1,-1]$

Discretization 2D Gaussian derivatives

As Gaussians are separable, we can approximate two 1D derivatives and then convolve them.

One example is the Sobel-Feldman operator:

$$
\text { Sobel }_{x}=\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right] \circ\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right]
$$

$$
\text { Sobel }_{y}=\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

n-th order Gaussian derivatives

d)

$$
g_{x^{n}, y^{m}}(x, y ; \sigma)=\frac{\partial^{n+m} g(x, y)}{\partial x^{n} \partial y^{m}}=\left(\frac{-1}{\sigma \sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma \sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma \sqrt{2}}\right) g(x, y ; \sigma)
$$

n-th order Gaussian derivatives

$$
g_{x^{n}, y^{m}}(x, y ; \sigma)=\frac{\partial^{n+m} g(x, y)}{\partial x^{n} \partial y^{m}}=\left(\frac{-1}{\sigma \sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma \sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma \sqrt{2}}\right) g(x, y ; \sigma)
$$

n-th order Gaussian derivatives

$$
g_{x^{n}, y^{m}}(x, y ; \sigma)=\frac{\partial^{n+m} g(x, y)}{\partial x^{n} \partial y^{m}}=\left(\frac{-1}{\sigma \sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma \sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma \sqrt{2}}\right) g(x, y ; \sigma)
$$

n-th order Gaussian derivatives

$$
g_{x^{n}, y^{m}}(x, y ; \sigma)=\frac{\partial^{n+m} g(x, y)}{\partial x^{n} \partial y^{m}}=\left(\frac{-1}{\sigma \sqrt{2}}\right)^{n+m} H_{n}\left(\frac{x}{\sigma \sqrt{2}}\right) H_{m}\left(\frac{y}{\sigma \sqrt{2}}\right) g(x, y ; \sigma)
$$

n-th order Gaussian derivatives

Image sharpening filter

Image sharpening filter

Subtract away the blurred components of the image:

$$
\text { sharpening filter }=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]-\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

This filter has an overall DC component of 1. It de-emphasizes the blur component of the image (low spatial frequencies).

Input image

Sharpened

Sharpened

Input image

