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Today’s content

Temporal filtering—what sorts of things can you do with it?
« picking out objects moving with a certain velocity.

Gabor filters and quadrature pairs.

Measuring or synthesizing motion.

Aliasing

Motion illusion, involving aliasing, addressing whether

humans match spatial patterns, or use temporal filters, to
measure motion.

If there’s time: using temporal filtering to remove objects
moving with a certain velocity.



Temporal filtering
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why filter videos over time?
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Sequences
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A box moving with speed vy
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Global constant motion

A global motion of the image can be written as:

FOy, 1) = folx —vet,y — vyi)

Where:

fO (X, y) — f(x, v, O)
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Temporal Gaussian
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This filter keeps stationary
things sharp, and blurs
moving things.




Spatio-temporal Gaussian
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Spatio-temporal Gaussian

How could we create a filter that keeps sharp objects that move
at some velocity (vx , vy) while blurring the rest?

Gy (0, 1) = g(X — Vit y — vyt 1)
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(last class) Gaussians set scale
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Gabor wavelets

Good for both temporal and spatial filtering

)C2+y2

Y. (x,y)=e 2" cos(2mu,x)

u,=0

Gabor wavelets are like sinusoids,
only they are localized, as enforced
by the Gaussian multiplicative
window.




l] m nn Gabor filters at different

LRI

scales and spatial frequencies

Top row shows anti-symmetric

(or odd) filters; these are good
for detecting odd-phase
structures like edges.

Bottom row shows the
symmetric (or even) filters,
good for detecting line phase
contours.




Fourier transform of a Gabor wavelet
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Quadrature pair




“oriented energy” from a quadrature pair
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Quadrature filter pairs

A quadrature filter 1s a complex filter whose real part is related to its
imaginary part via a Hilbert transform along a particular axis through
origin of the frequency domain.
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energy
response to
an edge




energy
response to a
line




Using phase changes of local Gabor filters to
analyze or generate motion

)C2+y2

Y. (x,y) = e 20 cos(2yru0x+q> t)
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Space-time plot of the a slice through the
patio-temporal filter of the previous slide

)Cz+y2

Y.(x,y) = e 2’ cos(2nu0x+<p t)
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Gabor filters for analyzing motion as

¢ orientation in space-time
Awt

Remember: uniform motion at a particular speed and direction
means the spatio-temporal Fourier transform of the local patch is
X non-zero only along a particular plane in the frequency domain.




Gabor filters for analyzing motion

Figure 1.9: a) Space-time Gabor filters tiles. b) Set of Gabor filters selective to a particular
velocity.
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Motion without movement

SIGGRAPH '91 Las Vegas, 28 July-2 August 1991
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Figure 1: 1-d cross-sections of filters. (a) Even phase (G2). (b) Odd phase (/3). (¢) Filters modulated in phase according to Eq. (1). Note
the apparent rightward motion of the filter npples.
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Figure 2: (a) and (b): G and 4 filiers were applied to an image of Einstein. (¢) Images modulated as in Eq. (1). When viewed as a temporal
sequence this generates the perception of rightward motion, yet image remains stationary.




Viotion without movement




Sampling



Sampling

Continuous world
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Sampling

Continuous image 1 (x, )

We can sample 1t using a rectangular grid as

fn,m] =f (nTy,mTy)
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Let’s start with this continuous image (it 1s not really continuous...)
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Aliasing
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Modeling the sampling process
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Modeling the sampling process

Foy=f@ > 6t—nTy)=f(1)or, (1)

A (0 T 297, (1)
/\ N [ ‘ | ’ ‘ ’ Delta train
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The Fourier transform 1s a convolution...

Interesting property of the delta train: the Fourier transform of a
delta train of period T is another delta train with period 2m/T
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Modeling the sampling process
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Interesting property of the delta train: the Fourier transform of a
delta train of period T is another delta train with period 2m/T.
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Modeling the sampling process
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What happens when the repetitions overlap?
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Aliasing



Aliasing
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Both waves fit the same samples. Aliasing consists 1n “perceiving”
the red wave when the actual input was the blue wave.
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zero frequency of
baseband

just-recoverable
frequency
component

aliasing

origin of first
replicated
spectrum

no aliasing

aliasing
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Sampling theorem

The sampling theorem (also known as Nyquist
theorem) states that for a signal to be perfectly
reconstructed from it samples, the sampling
period T.hastobe T.>T . /2 whereT . isthe

min
period of the highest frequency present in the

input signal.
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Antialising filtering

Before sampling, apply a low pass-filter to
remove all the frequencies that will produce

aliasing.

- 103x128 26%32

Without antialising = &
filter.

With antialising
filter.




Spatio-temporal sampling illusion
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Evidence for filter-based analysis of motion in
the human visual system shown via spatio-
temporal visual illusion based on sampling

Two potential theories for how humans compute our motion perceptions:
(a) We match the pattern in the image that we see at one moment and
compare it with what we see at subsequent times.

(b) We use spatio-temporal filters to measure spatio-temporal energy in
order to measure local motion.

This illusion favors one theory over the other.
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Square wave Fourier
components

Using Fourier series we can write an ideal square wave as an infinite series of the form

}‘ 4 — sin ((2k — 1)27 ft)
;l-square(t) — - Z (ZL - 1)

k=1

4 1 1
== (Sin(Q;'Tft) +3 sin(6m ft) + = sin(107ft) 4 - - -
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http://en.wikipedia.org/wiki/Square_wave

A square wave is an infinite sum of sinusoids
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spatial frequency Visual signal
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spatial frequency

_—

temporal frequency

low-pass filtered
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blend over the two conditions foramontal ftocaoney
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faster display speed
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alpha: 1 squareFlag: 1 offset: period/4



faster display speed

alpha: 0 squareFlag: 1 offset: period/4




fast blended...




derivatives of Gaussians
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derivatives of Gaussians




Space-time Gaussian derivatives

og  —t
- — _Qg(x’ Y, Z‘L)

ot op
Vg — (g,\‘(x,y, t)’ g.\’(xvyv [)9 gf(xayv t)) —

— (—x/az, —y/a”, —T/Ufz) g(x.y.1)

Note: we can discretize time derivatives in the same way we
discretized spatial derivatives. For instance:

fIm,n,t]—f[m,nt—1]



Cancelling moving objects

Can we create a filter that removes objects that move at some
velocity (vx , vy) while keeping the rest?



Space-time Gaussian derivatives

For a global translation, we can write:

flx,y, 1) = fo(x —vyt,y — V_\-’t)

Therefore, we can write the temporal derivative of f as a function
of the spatial derivatives of f, :

of _ ofe o o

-~ - ) _ _ll-",l' - I 1 _v .
or ot ox 0y

-

And from here (using derivatives of £, which will be the same):
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This relation 1s known as the “Brightness change constraint
equation”, introduced by Horn & Schunck 1n 1981



Space-time Gaussian derivatives

Can we create a filter that removes objects that move at some
velocity (vx , vy) while keeping the rest?

Yes, we could create a filter that implements this constraint:

—+ 1;\}_i =

) o S O
ot ox T 0y

We can create this filter as a combination of Gaussian derivatives:

h(x,y,t; Ve, Vy) = g+ Vx&x + Vy&y
T
-V g (1 , Vs v.\,)



Space-time Gaussian derivatives
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Nulling-out vx =0, vy=0 motion



Nulling-out vx=-1, vy=0 motion



Nulling-out vx=1, vy=0 motion
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