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Spatial Pyramids
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Today's lecture

Problem set 2 due today
Problem set 3 released today
Reading: course notes, chapter 20

 (Gaussian pyramid
* application: recognition
* neural network algorithms
o Laplacian pyramid
» application in image blending
* neural network algorithms
e Steerable pyramid
e application in texture synthesis
* neural network algorithms



We need translation invariance
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e need translation and scale invariance



Image pyramids




Gaussian Pyramid




Subsampling and aliasing
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The Gaussian pyramid

For each level

1. Blur input image with a Gaussian
(actually, binomial) low-pass filter
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The Gaussian pyramid

For each level
1. Blur input image with a Gaussian filter
2. Downsample image
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The Gaussian pyramid

256><256 128><128 I 64><64 o 32><32




The Gaussian pyramid
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The Gaussian pyramid operators, in matrix form
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The Gaussian pyramid operators, in matrix form
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The Gaussian pyramid as a matrix multiplication
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The Gaussian pyramid summary
-
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For each level
1. Blur input image with a Gaussian filter
2. Downsample image




Gaussian pyramid applications

* Object recognition

 Neural Network image synthesis
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The Laplacian Pyramid

Compute the difference between upsampled Gaussian pyramid
level k+1 and Gaussian pyramid level k.
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The Laplacian Pyramid
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The Laplacian Pyramid

‘ Gaussian pyramid
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The Laplacian Pyramid operators in matrix form
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64x64

Insert zeros

Upsampling

128x128
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The Laplacian Pyramid operators in matrix form
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The Laplacian Pyramid

lo = (Lo — FoGo)go
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The Laplacian Pyramid shown in matrix form

1 Gaussian pyramid
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Laplacian pyramid




Inverting the Laplacian Pyramid

Gaussian
residual

ey

Laplacian pyramid Can we invert the
Laplacian Pyramid??
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Inverting the Laplacian Pyramid

Gaussian pyramid
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Inverting the Laplacian Pyramid

Gaussian pyramid
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Inverting the Laplacian Pyramid

‘ Gaussian pyramid
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Inverting the Laplacian Pyramid

‘ Gaussian pyramid ‘
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Inverting the Laplacian Pyramid

1 Gaussian pyramid

I |-

Analysis/Encoder Synthesis/Decoder
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Laplacian pyramid applications

Texture synthesis

Image compression

Noise removal

Computing image features (e.g., SIFT)

Image Blending...
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Image Blending
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Image Blending
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Image Blending

I=m*I* 4+ (1 —m)*I°
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Slide by A. Efros

Image Blending
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Affect of Window Size
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Slide by A. Ef%g_



Affect of Window Size

Slide by A. Efros
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Good Window Size

siceby A Eros - QPtimal” Window: smooth but not ghosted 8



What is the Optimal Window?

To avold seams

* window >= size of largest prominent feature

To avoid ghosting

* window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain

» |argest frequency <= 2*size of smallest frequency
* image frequency content should occupy one “octave” (power of two)

Slide by A. Efros
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Image Blending with the Laplacian Pyramid

[, = ZA*mk —I—ZB 1—my)



Image Blending with the Laplacian Pyramid
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Image Blending with the Laplacian Pyramid

Build Laplacian pyramid for both images: LA, LB
Build Gaussian pyramid for mask: G
Build a combined Laplacian pyramid.

Collapse L to obtain the blended image.
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Image pyramids
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Orientations
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Steerable Pyramid

similar to Gabor filters,
similar to early filters in
human visual system,
similar to early filters of
trained neural networks:
Oriented, spatially
localized, multi-scale,
multi-phase filter bank. @ 45
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Steerable Pyramid
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Steerable pyramid applications

* Jexture synthesis
* Noise removal
 Motion analysis

 Motion synthesis, motion magnification
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1297x256

28x16

16x16

Linear Image Transforms
28x16
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Making textures
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Examples of Textures

Stationary

Stochastic




Nature Vol. 290 12 March 1981 921

REVIEW ARTICLES

Textons, the elements of texture perception,
and their interactions

Bela Julesz
Bell Laboratories, Murray Hill, New Jersey 07974, USA

—— .y . e — -

- . — -— e e

Research with texture pairs having identical second-order statistics has revealed that the pre-attentive
texture discrimination system cannot globally process third- and higher-order statistics, and that
discrimination is the result of a few local conspicuous features, called textons. It seems that only the

first-order statistics of these textons have perceptual significance, and the relative phase between textons
cannot be perceived without detailed scrutiny by focal attention.
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Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.



Pre-attentive texture discrimination
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Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.



Pre-attentive texture discrimination
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Bela Julesz, "Textons, the Elements of Texture Perception, and

their Interactions". Nature 290: 91-97. March, 1981.



Pre-attentive texture discrimination
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This texture pair is pre-attentively indistinguishable. Why?

Bela Julesz, "Textons, the Elements of Texture Perception, and
their Interactions”. Nature 290: 91-97. March, 1981.
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Fig. 1 Top row, Textures
consisting of Xs within a
texture composed of Ls.
The micropatterns are
placed at random orienta-
tions on a randomly per-
turbed lattice. a, The bars
of the Xs have the same
length as the bars of the
Ls. b, The bars of the Ls
have been lengthened by
25%, and the 1ntensity
adjusted for the same
mean luminance. Dis-
criminabitity is enhanced.
c, The bars of the Ls
have been shortened by
25%, and the intensity
adjusted for the same
mean luminance. Dis-
criminabitity 1s 1mpaired.
Boitom row: the responses
of a size-tuned mechan-
1Sm d, response to 1mage
a; e, response to image b;
f; response to image c.
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Early vision and texture perception

James R. Bergen* & Edward H. Adelson™* (j &

* SR1 David Sarnoff Research Center, Princeton,
New Jersey 08540, USA . i i . i
“* Media Lab and Department of Drain and Cognitive Science, Reprinted from Nature, Vol. 333. No. 6171. pp. 363-364, 26 May 1988

Massachusetts Institute of Technolegy, 1dge, ~ . .
s e &y ccnology, Cambridge © Macmillan Magazines Lid., 1988




Jim Bergen's conjecture

“If matching the mean amplitude of a bandpass spatial filter’s response b
goes a little way towards mimicking human texture perception, then
maybe matching the histogram of the responses of filters (the marginal
statistics) will do an even better job of capturing human texture

perception.”

Dave Heeger's response

“You mean if | took a steerable pyramid of some random noise, and
forced the histograms of each subband level to match those of some
target texture, that the modified noise image would then look like that
texture??? No way! I'll prove it to you; here, let me try it out... hmm,

gee, that worked pretty well...”




Pyramid-Based Texture Analysis/Synthesis

David I. Heeger®
Stanford University

Abstract

This paper describes a method for svnthesizing images that match
the texture appearance of a given digitized sample. This synthesis is
complelely aulomatie and requires only the “largel” lexture as mpul.
It allows generation of as much texture as desired so that any object
can be covered. It can be used to produce solid textures for creat-
ing wextured 3-d ohjects without the distortions inherent in texture
mapping. L can also be used W synthesize lexture mixtures, lmages
Lhat look a bil like each ol several digiuzed samples. The approach
1s based on a mocel of human texture perception, and has potential
to be a practically useful tool for graphics applications.

1 Introduction

Computer renderings of objects with surface texture are more inter-
esting and realistic han those without texture. Texlure mapping [13]
15 a lechnigue [or adding the appearance of surlace detadl by wrap
ping or projecting a digitized texture image onto a surface. Digitized
textures can be obtzined from a variety of sources, e.g.. cropped
from a phomCD image, hut the resulting rexture chip may not have
the desired size or shape. To cover a large nhject vou may need o
repeat the texture; this can lead to unacceptable arutacts either in the
form of visible seams, visible repetition, or both.

Texture mapping suffers from an additional funéamental prob-
lem: often there is no natural map from the (planar) texture image
tn the geometry/topology of the surface. so the texmure may be dis
lorted unnaturally when mapped. There are some parlial solulions
to this distortion problem [15] but there 1s no universal solution for
mapping an image onto an arbitrarily shaped surface.

An alternative to texture mapping is o create (paint) textures by
hand directly onto the 3-d surface model [14], but this process is
hoth very lahor intensive and requires consideranle artistic skill.

Another alternative is ™ use compurcr-synthesized textures so
Lthat as much eature can be generated as needed. Furthermore, some
ol the synlhesis wehmqgues produce lextures hal tle seamlessly.

Using synthetc watures, e disloruon problenn hias been solved
in two different ways. First, some technigues work by synthesizing
texture directly on the object surface (¢.g., [21]). The seconc solu-
tion is to use solid texturcs [19, 23, 24]. A solid texture is a 3-d ar-
ray ol color values. A point on the surface of an object is colored by
Lthe value ol the solid wextlure al the corresponding 3-d poul. Solid
texturing can be a very natural solution to the cistortion problem:

* Department of P'sychology, Stanford University, Stanford, CA 94305,
heeger@ white stanford.edu http://white stanford.edu

TSRI David Samofl Rescarch Cenler, Princeon, NJ 08544,
jrh@ samoff.com

James R. Bergen!

SRI David Samoff Research Center

there 1s no ¢istortion because there is nc mapping. Ilowever, exist-
ing techniques for synthesizing solid textures can be quite cumber-
some. (One mast lecam how to tweak the prrameters or procedures
ol the texture synthesizer W gel a desired ellect.

This paper presents a technique for synthesizing an image (or
solid texture) that matches the appearance of a given texture sample.
The kev advantage of this technique is that it works entirely from the
exarple lexture, requiring no additional information or adjustment,
'The technique starts with a digitized image and analvzes it to com-
pute a number of texture parameter values. Those parameter val-
ues are then used to synthesize 2 new image (of any size) that looks
(in its color and exture properties) like the original. The analysis
phase s inherently lwo-dimensional since the input digitized nnages
are 2-d. The synthesis phase, however, may be either two- or three-
dimensional. For the 3-d case. the output is a solid texture such that
planar slices through the solid look like the original scanned image.
In either case, the (2-d or 3-d) leature 15 synlhesized so that il tles
secamlessly.

2 Texture Maodels

Textures have often been classified into two categories, determinis-
tic iextures and stochastic textures. A deterministic texture is char
acterized by a set of prumitives and a placement rule (e.g., a tile
fioor). A stochastic texture, on the other hand, does not have easily
identifiable primitives {(e.g., granite, bark, sand). Many real-world
textures have some mixmure of these two characteristics (e.g. woven
Labric, wouodgrain, plowed Lelds).

Much ol the previous work on lexwre analysis and synlhesis
can be classified according to what type of texture model was
used. Some of the successful texture models include reaction-
dilfusion [31, 34], [requency domain [17], [ractal [9, 18], and sta
ustical/random field [1,6,8, 10,12, 13,21, 26| models. Some (e.g.,
[10]) have usec hvbrid models that include & deterministic {or pe-
riodic) component and a stochastic component. In spite of all this
work, scanned images and hand drawn textures zre still the princi
ple source of lexture maps in computer graphics.

'I'his paper tocuses on the synthesis of stochastic textures. Our
approach is motivated by research on human texture perception.
Current theories of texture discrimination are hascd on the fact that
two textures are often difficult to discriminzte when they produce
a similar distribulion ol responses in a bank ol (vrienlation and
spatial-frequency selective) linear filters [2, 3,7, 16,20, 32]. The
method described here, thercfore, svnthesizes textures by match-
ing distrihutions (or histograms) of filter outpurs. This approach de-
pends on the principle (not entirely correct as we shall see) thal all
of the spatial information characterizing a texture image can be cap-
tured in the first order statistics of an appropriately chosen set of lin-
ear filter outputs. Nevertheless, this model (though incomplete) cap-
mures an interesting set of texmure properties.

Fignre 5 ('lop Kow] Original diganized sample textiares red granite, berry bush, hignred maple, vellow caral. (Bortom Hows)
Synrhotie snohid toxtnred teapots.

https://www.cns.nyu.edu/heegerlab/content/publications/Heeger-siggraph95.pdf

SIGGRAPH 1995



The main 1dea: 1t works by ‘kind of” projecting a random 1mage 1nto the set of
equivalent textures
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Overview of the algorithm

Match-texture (noise, texture)

|Match-Histogram (noise, texture) |

analysis-pvr =|Make-Pyramid (texture)|
Loop for several iterations do

Two main tools:

1- steerable pyramid

synthesis-pyvr = Make-Pyramid (noise)
Loop for a-band in subbands of analysis-pvr

for g-band in subbands of synthesis-pvr
do
Match-Histogram (s-band, a-band)
noise = Collapse-Pyramid (synthesis-pvr)
Match-Histogram (noise,texture)

2- matching histograms



250t

1-The steerable pyramid

Steerable pyr

Input texture
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Overview of the algorithm

Match-texture (noise, texture)

|Match-Histogram (noise, texture) |

analysis-pvr =|Make-Pyramid (texture)|
Loop for several iterations do

Two main tools:

1- steerable pyramid

synthesis-pyvr = Make-Pyramid (noise)
Loop for a-band in subbands of analysis-pvr

for g-band in subbands of synthesis-pvr
do
Match-Histogram (s-band, a-band)
noise = Collapse-Pyramid (synthesis-pvr)
Match-Histogram (noise,texture)

2- matching histograms



2-Matching histograms

Histograms Cumulative Histograms
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2-Matching histograms
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We look for a transformation
of the image Y

Y’ =1 (Y)
Such that

Hist(Y) = Hist(f(Z))

Problem: there are infinitely many functions

that can do this transformation.

A natural choice is to use f being:

- pointwise non linearity

- stationary

- monotonic (most of the time invertible)



2-Matching cumulative histograms

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).
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2-Matching histograms
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Matching histograms example

Histograms Cumulative Histograms
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Matching histograms example

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).
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Matching histograms example
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Matching histograms of a subband
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Matching histograms of a subband
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Input texture

100 ¢

150 ¢

250t
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(histogram)

Texture analysis

Wavelet decomposition (steerable pyr)

(Steerable pyr; Simoncelli & Freeman, '95)

The texture is represented as a collection of
marginal histograms.

(histogram)




Texture synthesis

Heeger and Bergen, 1995
(histogram)
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Why does 1t work? (sort of)
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- . = The black and white

SR - blocks appear by
thresholding (f) a
blobby image

Filter bank




Why does 1t work? (sort of)

The black and white blocks appear by
thresholding (f) a blobby image
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Why does 1t work? (sort of)

High pass residual
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Color textures

Three textures
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Color textures
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Color textures

This does not work
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Synthetic texture

20

Original texture



Color textures

Problem: we create new colors not present in the original image.

Why? Color channels are not independent.




PCA and decorrelation
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PCA and decorrelation

The texture synthesis algorithm assumes that the channels
are independent.
What we want to do is some rotation
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See that in this rotated space,
iIf | specify one coordinate the
other remains unconstrained.
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SVD and decorrelation

correlation(R,G)
e

1.0000 0.9303 0.6034
0.9303 0.9438 0.6620
0.6034 0.6620 0.5569

SVD finds the principal directions of variation of the data.
It gives a decomposition of the covariance matrix as:

C=USV

V =

-0.6347 0.6072 0.4779
-0.6306 -0.0496 -0.7745
-0.4466 -0.7930 0.4144

By transforming the original data (RGB) using D we get:
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3 X Npixels
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3X3

The new components (U1,U2,U3) are decorrelated.
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VI=U-X-V*
lllustration of the singular value o]

decomposition UZV* of a real 2x2

matrix M.

Top: The action of M, indicated by its
effect on the unit disc D and the two
canonical unit vectors e4 and e».

Left: The action of V+, a rotation, on D,
eq, and éo.

Bottom: The action of £, a scaling by
the singular values oy horizontally
and o vertically.

Right: The action of U, another
rotation.

https://en.wikipedia.org/wiki/
Singular_value_decompositior



Color textures
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These three textures
Look less similar
(lower dependency)

These three textures
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Color textures

Inverse
Rotation
Matrix
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Color textures

Inverse
Rotation

otation
Matrix

Original texture
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These three textures These three textures
look similar Look less similar

(high dependency) (lower dependency)
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Color channels

Without PCA
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Color channels
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Color channels
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‘Examples from the paper
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Figure 3: In each pair left unage i1s original and right image i1s synthetic: stucco, iridescent ribbon. green marble, panda fur,

slag stone, hgured yvew wood.
: . Heeger and Bergen, 1995



Examples from the paper

Figure 4: In cach pair left image is original and right image is synthetic: red gravel, figured sepele wood, brocolli, bark paper,
denim, pink wall, ivy, grass. sand, surl.



Examples not from the paper
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Synthetic
texture

But, does it really work even when it seems to work”?



Portilla and Simoncell

* Parametric representation, based on
(Gaussian scale mixture prior model for
Images.

 About 1000 numbers to describe a texture.
» Better results than Heeger Bergen.



Portilla and Simoncell
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Portilla & Simoncelli
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