
MIT CSAIL

6.819/6.869 Advances in Computer Vision

Spring 2022

Problem Set 2

Posted: Tuesday, February 15, 2022 Due: Thursday, February 24, 2022

Submit two separate files: 1) a report named 〈your kerberos〉.pdf, including your re-
sponses to all required questions with images and/or plots showing your results, 2) a file
named 〈your kerberos〉.ipynb of the python notebook you filled in with the cells run.

Important!! For any questions involving code, copy the relevant lines into your PDF
writeup. Also include any relevant image outputs directly in the PDF. Please draw a box
around your solution (\fbox).

Late Submission Policy: If your pset is submitted within 7 days (rounding up) of the
original deadline, you will receive partial credit. Such submissions will be penalized by a
multiplicative coefficient that linearly decreases from 1 to 0.5

Problem 1: Lenses

In class, and in the imaging chapter of the class notes, we derived the lensmaker’s equation for
the case of a symmetric thin lens, of radius of curvature R for the front and back surfaces of
the lens. Suppose, instead, that we have a “plano-convex” lens, with the front surface shape
with a radius of curvature R, as before, but with a flat back surface.

(a) (1 point) Write down the 5 equations relating the angles of rays passing through a plano-
convex lens. The symmetric lens case is shown in Figure 1 (it was also on slide 49 of lecture
2 and page 12 of the lecture 2 (chapter 4) notes). You may use the same variables and
assumptions. A simplified diagram of the plano convex lens is shown in Figure 2.

(b) (1 point) Using the equations from part (a) and the lensmaker’s formula, find the expres-
sion for the lens focal length for this case.

1



Figure 1: Top: Diagram of a light ray passing through a symmetric thin lens. Bottom:
Relations between angles of rays passing through the lens.

Figure 2: Partial diagram of a plano-convex lens.

Problem 2: Structured light

In this problem we will simulate a structured light depth camera, like the Microsoft Kinect.
The Kinect consists of a camera and a projector, as shown in Figure 3. The projector shines
a structured pattern of light on the world (in the infrared spectrum so that it is invisible to
our eyes). The camera can see this pattern and observes how the light warps over the scene
geometry. From the pattern of distortions, it is possible to recover a depth map. Let’s see
how this can be done. We will simulate a scene illuminated by projected light and then show
how depth can be inferred from simulated photographs of this scene.

Look at the geometry in Figure 3. The projector emits a light ray that intersects its virtual
image plane at location (xp, yp), and the camera sees the reflected light on its image plane at
location (xc, yc).

For math simplicity, we will shift xy-coordinates into uv-coordinates, which turns the image

2



Figure 3: Left: A Kinect depth sensor, which consists of a projector and a camera (note:
there is also a second camera used to get better quality color images) [image source:
https://www.ifixit.com/Teardown/Microsoft-Kinect-Teardown/4066/1]. Middle: The geom-
etry of the projector-camera system we will consider. Right: The images seen from the
perspective of the camera and the projector, when we project a single red laser.

center into the image origin. We define (up, vp) = (xp − x̄p, yp − ȳp), where (x̄p, ȳp) is the
principal point (or image center) of the projected image. Similarly, we define (uc, vc) =
(xc − x̄c, yc − ȳc), where (x̄c, ȳc) is the principal point of the photographed image. We would
like to use this pair of image coordinates to determine the 3D coordinates of the surface point
causing the reflection.

The camera and projector are offset a distance d from each other only in the X direction.
The focal length of the camera is f , measured in the same units as xy-coordinates (in the
code, we will use pixels as the units). We distinguish between two kinds of 3D coordinates:
(Xc, Yc, Zc) are coordinates relative to the camera center (i.e. the camera center, which is
the orange dot, is at the origin in this reference frame). (Xp, Yp, Zp) are coordinates relative
to the projector center. We want to find the location of the red dot in the world given the
appearance of the red dot on the camera.

(a) Triangulation (1 point): We shine a ray of light out of the projector at coordinate
(up, vp), then find where the camera observes it, in camera image coordinates (uc, vc), in uv-
coordinates. These coordinate pairs allow us to triangulate the 3D coordinates of the object
that the ray reflected off of (the red dot in Figure 3).

Write expressions for the 3D coordinates of the red dot relative to the camera (Xc, Yc, and
Zc) as a function of uc, vc, up, vp, d, and f . This equation shows the basic principle we will
use to infer depth!

(b) Simulating a projected laser (2 points): Open the jupyter notebook provided (we
recommend using Google Colab). We want to first simulate what the camera will see if we
turn off all the lights and shine a “laser” out of the projector (i.e. have the projector project
a single ray of red light, like in Figure 3).

You are given a depth map Zp and the direction (up, vp) in which we project the laser. To
simulate what the camera sees, we need to find where in the camera image the surface point
illuminated by the laser shows up. This means we need to transform (up, vp) to (uc, vc) given

3



known scene geometry Zp.

Note: If the projector and camera views differed only by a rotation, we could simply use a
homography and would not need to know Zp to perform this transformation. Because there is
a translation involved, the transformation becomes depth-dependent.

We will concatenate the value 1/Zp to our projector coordinates (up, vp). It turns out that
the mapping from (up, vp, 1/Zp) to (uc, vc) can be expressed as a fixed linear transformation,
and your job will be to find it by composing a series of intermediate mappings.

Note: (up, vp, 1/Zp) should not be thought of as a coordinate in space.

The notebook contains four missing transformation matrices, operating on homogeneous co-
ordinates. Homogeneous coordinates means that the 3x1 vector (up, vp, 1/Zp) is equivalent to
the 4x1 vector (up, vp, 1/Zp, 1) where the final element is an arbitrary scale factor. The four
mappings are:

• T1 : (up, vp, 1/Zp) to (Xp, Yp, Zp) ◁ projector image to projector world

• T2 : (Xp, Yp, Zp) to (Xc, Yc, Zc) ◁ projector world to camera world

• T3 : (Xc, Yc, Zc) to (uc, vc) ◁ camera world to camera image

• T : (up, vp, 1/Zp) to (uc, vc) ◁ projector image to camera image

In the notebook, fill in the matrices T1, T2, and T3 and compose them to form matrix T .
The ability to do this kind of algebra on transformations is one of the main reasons we like
homogeneous coordinates. Copy your code for the four matrices into your PDF writeup
(please keep it concise and only include what is relevant).

(c) Laser scan of a scene (1 point): We use the transformations you defined to simulate the
laser scanning over a room. Why does the path of the laser wiggle in the horizontal direction
from the camera’s view?

Try changing the scan path (scan left to right rather than top to bottom). Does the laser
wiggle in the vertical direction? Why or why not? Write a short explanation to explain why
the path of the laser is qualitatively different when you scan left to right compared to when
you scan top to bottom.

(d) Inferring camera depth (1 point): Now we will try to infer camera depth from the
simulated image of the laser scanning over the room. As before, we shine the laser through
(up, vp), and observe it in the camera at (uc, vc), in uv-coordinates. Use your expression from
part (a) to fill in the code for function inferDepthFromMatchedCoords, which computes Zc.

Use the function you wrote to infer the depth of the bicycle scene. Describe what you observe
and share a screenshot of the result in your PDF writeup.

4



(e) Projecting structured light (1 point): Next, we will move away from lasers and describe
“structured light”. Scanning across a scene with a laser is a slow process, and lasers are
expensive. The idea of structured light is to project many rays of light at once – a whole
projected image of light – in a pattern that allows us to identify which ray of light (xp, yp)
created the illumination observed by the camera at each point (xc, yc), in xy-coordinates.
Recall from above that if we know corresponding points in the projector’s image and the
camera’s image, then we can solve for depth. Complete the function getImgCoordinatePairs

to generate these corresponding image coordinates.

We have provided a pattern of stripes stripe lights.png. Illuminate the scene with this
pattern of light. To do this, we have provided a function util.render, which requires lists of
corresponding projector and camera image coordinates, and the intensity of light to project
at each of these pixels (represented by L p img). Show your result in your PDF writeup.

Try illuminating the scene with a different pattern of light (optional: try projecting a moving
pattern of lights, it looks cool). Show your result in your PDF writeup. Describe or mark
some regions of the camera’s image where occlusion blocks the projected light.

Note 1: render is very similar to the laser rendering code you used above, but handles occlu-
sions using a “depth buffer”, which checks for each surface point if it is the nearest point to
the camera among all points at that camera coordinate.

Note 2: render assumes an unrealistic reflectance model, where the amount of reflected light
does not depend on surface orientation. In the final part of this pset, we will see what happens
if we move to a more realistic, Lambertian, reflectance model.

(f) Inferring depth from structured light (2 points): The next step is to infer depth from
the structured light image. Here, you must come up with a pattern of light and a function F ,
such that you can decode

(xp, yp) = F (Lc((xc, yc)), (xc, yc)),

where Lc((xc, yc)) is the intensity of light the camera sees at pixel (xc, yc), and this pixel
was illuminated by the ray that was projected through (xp, yp). F can be a trivial function
if you choose a certain pattern. Write code for F , and write code that generates the light
pattern (an image) in getStructuredLight.

Use the decoded coordinates to estimate depth Zc. Notice that we were able to infer depth
just from a single photograph of the scene taken by the camera (we’ve denoted this photo as
Lc)! Copy your code for F and an image of the decoded depth into the PDF writeup.

Can you think of other light patterns, paired with decoders F , that could be used? Describe
another general strategy (you don’t have to implement this additional strategy).

(g) 6.869 only – Lambertian rendering (2 points): Our simulation is not quite real-
istic because it assumed all surfaces in the scene reflected the same amount of light re-
gardless of their orientation. We have provided a more realistic renderer in the function
util.render Lambertian. This renderer uses a Lambertian reflectance model:

Iout = N · L ∗ Iin

5



where Iout is the intensity of reflected light, N is the surface normal vector, L is the direction of
the incoming light ray with respect to the surface normal, Iin is the intensity of the incoming
light ray from the projector, and · is the dot product. This equation says that surfaces that
are illuminated head on will look brighter than surfaces that are illuminated at an angle.

If we render the scene in this more realistic way, does your pattern and decoder from (f) still
work? Why or why not?

Design a new light pattern and new decoder F that works better in the presence of Lambertian
reflectance. Hint: try illuminating the scene with colored light. Copy your code for F and an
image of the decoded depth into the PDF writeup.

6


