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6.869 and 6.819 students are expected to finish all problems unless there is an addi-
tional instruction.We provide a python notebook with the code to be completed. You can
run it locally or in Colab (upload it to Google Drive and select ’open in colab’ ) to avoid
setting up your own environment. Once you finish, run the cells and download the notebook
to be submitted.

Please submit a .zip file named〈yourkerberos〉.zip containing 1) report named report.pdf
including your answers to all required questions with images and/or plots showingyour
results, and 2) the python notebook provided, with the cells run and the relevant source-
code. If you include other source code files for a given exercise, please indicate it in the report.

Late Submission Policy: If your pset is submitted within 7 days (rounding up) ofthe
original deadline, you will receive partial credit. Such submissions will be penalized by amul-
tiplicative coefficient that linearly decreases from 1 to 0.5.

Problems 1, 2, and 4 assume no knowledge of backpropagation. Problem 3 is
about backpropagation, which will be covered in the lecture on March 8.

In problems 2 and 4, you will be experimenting with neural networks using PyTorch. In order
to run the experiments fast, you will need access to a GPU. We recommend using Colab to
run the experiments, since it comes with GPU support. To enable it simply do:

Runtime - Change Runtime type - Hardware accelerator - GPU.

For those questions include the generated images and relevant code in this report.

Credit: part of this PSET is inspired by [1], [2], and [3].

Problem 1 Forward Propagation (2pts)

(a) (Convolution layer) Convolution layer is the most popular module in computer vision
tasks. Consider your input xin and output xout are both 1-D signals with the same
dimension N , and your kernel W has size k with stride 1. Find the equation for its
forward propagation through a convolution layer. You can omit the bias term of the
convolution layer.

1



(b) (Pooling layer) This question is required for 6.869 and optional for 6.819. Pooling
layer is a popular layer without trainable parameters. In this question, the pooling is a
max pooling operator with stride 1. Consider your input xin and output xout are 1-D
signals with the same size, find the equations or pseudo code for its forward propagation.

Problem 2 Neural Network Inference (1pt)

In this section, we will test a neural network toclassify an image between 1000 classes, defined
in the Imagenet dataset. You can use the code to view which are those classes.

(a) Load the randomly initialized network. How many features are in the input of the last
layer?

(b) Run the Corgi image through the network. What are the top predictions?

(c) Reload the network with pre-trained weights. Those weights correspond to training the
network with the Imagenet dataset. What are the top predictions? What is the proba-
bility of the top prediction?

Problem 3 Backpropagation (4pts)

(a) (Convolution layer) Similar to in Problem 1(a), consider your input xin and output xout
are both 1-D signals with the same dimension N , and your kernel W has size k. Find the
equation for backward propagation. You can omit the bias term of the convolution layer.

(b) (Convolution layer) Consider the backpropagation process, with learning rate η, and the
gradients from the last layer is ∂C

∂xout
. Find the gradients of the input ∂C

∂xin
, and the update

rule for the kernel weights W i+1.

(c) (Convolution layer) Discuss how you handle the boundaries and explain your choice.

(d) (Pooling layer) This question is required for 6.869 and optional for 6.819. Similar
to in Problem 1(b), find the equations or pseudo code for backward propagation of the
given input and output through a max pooling layer with stride 1.

(e) (Pooling layer) Discuss how you handle the boundaries and explain your choice.

Problem 4 DeepDream and Adversarial Attacks (4pts)

When training neural networks, we optimize the model parameters to maximize a certain
objective. In some cases, we may be interested in optimizing the input of the network for
a fixed set of parameters. In this section we will study how this technique can be used to
generate images that can help us interpret the network, or fool it by making imperceptible
changes to the input.

Neural networks are generally differentiable with respect to their input. Therefore, we can
compute the gradient of the objective with respect to the loss and use it to update the input
through gradient descent.
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We will start by using this technique to obtain the input that maximizes the activations of
the pre-trained neural network.

(a) Modify the input image to maximize the log-probability of the class Tarantula (id 76).
To do that, compute the gradient of the log-probability of Tarantula with respect to the
input image1. Copy in the report the resulting image and the new predicted probabilities.

(b) Follow question (a) but instead maximize the log-probability of the class Tiger Cat (id
282). Copy in the report the resulting image and the new predicted probabilities.

(c) Can you tell the difference between the adversarial examples and the original image?
Briefly discuss why would this cause security problems for deep neural networks.

(d) This question is required for 6.869 and optional for 6.819. In (a) and (b), adver-
sarial examples are generated by maximizing the log-probability of different classes. Let’s
try a different objective here. Typically we call the output from an intermediate layers
as the embedding or feature map of the network. For instance, each layer of network
generates a different embedding of the input image. Instead of maximizing one single
probability, modify a random image to minimize the ℓ2-distance between its feature and
the feature of the Corgi image. Try this with 3 different layers. Do the resulted images
look similar to the Corgi image? Include the modified image in the report.

(e) To avoid the adversarial examples, we need networks that are trained robustly to this kind
of noise. Madry’s group2 at MIT has been working on robust neural networks and study
their properties. Load the robustly trained network and repeat the previous experiment
in question (b). What are the top predicted classes? Include the modified image in the
report. How does it look now?

(f) Bonus. Try modifying the image into other classes. Include more examples of perturba-
tions.

(g) This question is required for 6.869 and optional for 6.819. Repeat problem (4.d)
with the robust neural network. Do the resulted images look more similar to the Corgi
image this time? Include the modified image in the report.
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1You can use torch.nn.functional.logsoftmax(output,1)[0, i] to compute the log-probability of class
i, where output is the output of the network (logits)

2https://people.csail.mit.edu/madry/
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