MIT CSAIL
6.819/6.869 Advances in Computer Vision

Spring 2022

Problem Set 7: Texture Synthesis and Style Transfer

Posted: Tuesday, April 12, 2022 Due: Midnight, Tuesday, April 19, 2022

6.869 and 6.819 students are expected to finish all problems unless there is an addi-
tional instruction.

We provide a python notebook with the code to be completed. You can run it locally
or in Colab (upload it to Google Drive and select ’open in colab’ ) to avoid setting up your
own environment. Once you finish, run the cells and download the notebook to be submitted.

Submission Instructions: Read Carefully! We will deduct points for not
following instructions. Please submit a .zip file named <your kerberos>.zip. At the
root of the zip file should be three separate files: 1) a report named <your kerberos>.pdf,
including your responses to all required questions with images and/or plots showing your re-
sults, 2) a file named <your kerberos>-texture-synthesis.ipynb of the python notebook
you filled in with the cells run 3) a file named <your kerberos>-style-transfer.ipynb
of the python notebook you filled in with the cells run. There should be no other files and
no nested directories (only the root directory) in your zip. For any questions involving code,
copy the relevant lines into your PDF writeup as succinctly as possible. Also include any
relevant image outputs directly in the PDF. Please draw a box around your solution (\fbox).

Late Submission Policy: If your pset is submitted within 7 days (rounding up) of
the original deadline, you will receive partial credit. Such submissions will be penalized by a
multiplicative coefficient that linearly decreases from 1 to 0.5.

Problem 1 Texture synthesis (5pts)

In this problem you will implement the Efros and Leung algorithm for texture synthesis [I]
discussed in Section 9.3 of Forsyth and Ponce [2]. In addition to reading the textbook you
may also find it helpful to visit Efros’ texture synthesis website: http://graphics.cs.cmu.
edu/people/efros/research/synthesis.html) in which many of the implementation details
described below can be found.

As discussed in class, the Efros and Leung algorithm synthesizes a new texture by performing
an exhaustive search of a source texture for each synthesized pixel in the target image, in
which sum-of-squared differences (SSD) is used to associate similar image patches in the
source image with that of the target. The algorithm is initialized by randomly selecting a
3 x 3 patch from the source texture and placing it in the center of the target texture. The
boundaries of this patch are then recursively filled until all pixels in the target image have
been considered. Implement the Efros and Leung algorithm as the following Python function:



http://graphics.cs.cmu.edu/people/efros/research/synthesis.html
http://graphics.cs.cmu.edu/people/efros/research/synthesis.html

synthIm = SynthTexture(sample, w, s)

where sample is the source texture image, w is the width of the search window, and s=(ht,
wt) specifies the height and width of the target image synthIm. As described above, this
algorithm will create a new target texture image, initialized with a 3x3 patch from the source
image. It will then grow this patch to fill the entire image. As discussed in the textbook, when
growing the image, un-filled pixels along the boundary of the block of synthesized values are
considered at each iteration of the algorithm. A useful technique for recovering the location of
these pixels is dilation, a morphological operation that expands image regions. Specifically, one
could use scipy.ndimage.binary dilation, numpy.nonzero, numpy.ix_ routines to recover
the un-filled pixel locations along the boundary of the synthesized block in the target image.
We have provided the sample code for this part, you are encouraged to take a look and play
with it.

In addition to the above function, we ask you to write a subroutine that for a given pixel in
the target image, returns a list of possible candidate matches in the source texture along with
their corresponding SSD errors. This function should have the following syntax:

[bestMatches, errors] = FindMatches(template, sample, G)

where bestMatches is the list of possible candidate matches with corresponding SSD errors
specified by errors. template is the w X w image template associated with a pixel of the
target image, sample is the source texture image, and G is a 2D Gaussian mask discussed
below. This routine is called by SynthTexture and a pixel value is randomly selected from
bestMatches to synthesize a pixel of the target image. To form bestMatches accept all pixel
locations whose SSD error values are less than the minimum SSD value times (1 4+ €). To
avoid randomly selecting a match with unusually large error, also check that the error of the
randomly selected match is below a threshold 0. Efros and Leung use threshold values of
€ =0.1 and 0 = 0.3.

Note that template can have values that have not yet been filled in by the image growing
routine. Mask the template image such that these values are not considered when computing
SSD. Efros and Leung suggest using the following image mask:

Mask = G .* validMask

where validMask is a square mask of width w that is 1 where the template is filled, 0 otherwise
and G is a 2D zero-mean Gaussian with standard deviation o = w/6.4 sampled on a w x w grid
centered about its mean. G can be pre-computed using scipy.ndimage.gaussian filter
routine or one can computed theselves following the Gaussian equation. The purpose of the
Gaussian is to down-weight pixels that are farther from the center of the template. Also,
make sure to normalize the mask such that its elements sum to 1.

To summarize, you will need to complete the follow three tasks in texture-synthesis.ipynb:
(i) compute the Gaussian kernel, (ii) complete the Find matches function, and (iii) sample
from the output of Find matches function and update the image. Provide short code
snippets for these in your PDF writeup.

Test and run your implementation using the grayscale source texture image rings. jpg avail-
able in the pset, with window widths of w = 5,7,13, s = [100, 100] and an initial starting seed



Figure 1: Screaming Taipei 101.

of (z,y) = (3,31). Explain the algorithm’s performance with respect to window size. For a
given window size, if you re-run the algorithm with the same starting seed do you get the
same result? Why or why not? Is this true for all window sizes? Answer these questions
in your PDF writeup.

In your report, include the synthesized textures that correspond to each window size along
with answers to the above questions. Copy these figures in your PDF writeup.

Problem 2 Neural Style Transfer (3pts)

In the second part of the assignment, we will walk you through Neural Style Transfer, an
algorithm presented by Gatys et al. [3]. Neural Style Transfer allows one to turn an input
image into a new artistic style. For instance, Fig. shows the magnifacent Taipei—101E| with
the art style from The Screa.rrﬂ The algorithm takes as inputs the content-image and the
style-image, and generates an output that looks similar to the content of the content-image
and the artistic style of the style-image.

Please follow the step-by-step instructions within style-transfer.ipynb and answer the
following questions:

(1) Implement the code for computing the gram matrix. Copy the relevant lines into
your PDF writeup.

(2) Different from the content-loss which computes the mean square error of the feature
maps of the optimized image and the content image, we computed the gram matrix for
the style-loss because . (Select all that apply.)

(a) style-loss should encode the spatial correspondence between the optimized image and
the style-image.

(b) style-loss shouldn’t encode the spatial correspondence between the optimized image
and the style-image.

(c) style-loss should match the distribution of features found in the optimized image and
the style-image.

"https://en.wikipedia.org/wiki/Taipei_101
https://en.wikipedia.org/wiki/The_Scream



(3)

(d) style-loss shouldn’t match the distribution of features found in the optimized image
and the style-image.

Using conv_5 or conv_1 as the content-loss layer produces different results because
(Select all that apply.) Attach the results in your report.

(a) conv_5 features care more about the exact pixel values reconstruction of the content-
image.

(b) conv_1 features care more about the exact pixel values reconstruction of the content-
image.

(c) conv_5 features care more about the semantic content of the content-image.

(d) conv_1 features care more about the semantic content of the content-image.

The style transfer algorithm presented here is cool, but we can do better! Notably, the
iterative optimization process is slow, which limits its real-world application. Below, we
attached several papers on speeding up the style transfer process. Briefly summarize one
of the papers in your report:

(a) Perceptual Losses for Real-Time Style Transfer and Super-Resolution, Johnson et
al. [5]

(b) Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, Huang
and Belongie [4].

References

Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling. In
ICCV, 1999.

David A Forsyth and Jean Ponce. Computer vision: a modern approach. Pearson,, 2012.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using
convolutional neural networks. In CVPR, 2016.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization. In ICCV, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In ECCV, 2016.



