MIT CSAIL

6.819/6.869: Advances in Computer Vision

Spring 2022

[Home | Policy | Schedule | Course Materials | Final Project | Piazza | Canvas ]

This schedule is preliminary and subject to change as the term evolves.

Course notes: https://groups.csail.mit.edu/vision/cvbook/

Lecture Date Topic Instructor Course Materials Assignments
Week 1
1 Tue 02/01/2022 Introduction. Simple Vision Systems Phillip slides (keynote)
slides (pdf)
admin slides
lecture video

notes:
2."Simple Vision System"
2 Thu 02/03/2022 Describing the Signal: pinhole, computational, and corner cameras. Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
4."Imaging"
Week 2
3 Tue 02/08/2022 Geometry, Stereo, Intrinsic-Extrinsic Camera Parameters. Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
5."Stereo"
pset1 out
FAQ
TUT Tue 02/08/2022 Python Tutorial (3:30-5:30pm) Instructor: Prafull, Moderator: Lucy Video Recording
materials (download folder, unzip, upload folder to GDrive)
4 Thu 02/10/2022 Signal Processing Antonio slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
12."Linear Image Filtering"
13."Fourier Analysis"
TUT Thu 02/10/2022 Python Tutorial (2:30-4:30pm) Instructor: Shuang, Moderator: Lucy Video Recording
materials (download folder, unzip, upload folder to GDrive)
Week 3
5 Tue 02/15/2022 Spatial Linear Filters Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video
pset1 due
pset2 out
6 Thu 02/17/2022 Temporal Linear Filters Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
14."Sampling and Aliasing"
23."Temporal Filters"
Week 4
7 Tue 02/22/2022 No Class
8 Thu 02/24/2022 Multi-Scale Pyramids Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
20. "Image Pyramids"
pset2 due
pset3 out
FAQ
Week 5
9 Tue 03/01/2022 Introduction to Machine Learning Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 7: Learning from Examples
"Chapter 8: The Problem of Generalization"
9 Tue 03/01/2022 PyTorch Tutorial (4:00-5:00pm) Instructor: Geeticka, Moderator: Wei Video Recording
materials (download folder, unzip, upload folder to GDrive)
10 Thu 03/03/2022 Neural Networks Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 9: Neural Nets"
10 Thu 03/03/2022 PyTorch Tutorial (4:00-5:00pm) Instructor: Ching-Yao, Moderator Yingcheng Video Recording
materials (download folder, unzip, upload folder to GDrive)
Week 6
11 Tue 03/08/2022 Stochastic Gradient Descent, Back Propogation Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 11: Backpropagation"
pset3 due
pset4 out
12 Thu 03/10/2022 Spatial NNs, CNNs, visualization of weights Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 21: Convolutional Neural Nets"
Week 7
13 Tue 03/15/2022 Mechanisms of training and running networks Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video
pset4 due
pset5 out
14 Thu 03/17/2022 Temporal NNs, RNNs, LSTMs, Attention Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 24: Recurrent Neural Nets"
Week 8
15 Tue 03/29/2022 Representation Learning Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 29: Representation Learning"
pset5 due
16 Thu 03/31/2022 Scene Understanding Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 34: Object Recognition"
Final project proposal due (guidlines)
pset6 out
Week 9
17 Tue 04/05/2022 Vision for Embodied Agents Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video
18 Thu 04/07/2022 EHT and Image Priors Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video
pset6 due
Week 10
19 Tue 04/12/2022 Statistical Models for Images, Texture Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Statistical image models"
pset7 out
20 Thu 04/14/2022 Image Synthesis: structured prediction, generative models, GANs, autoregressive models Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 30: Generative models,
Chapter 31: Generative modeling meets representation learning"
Week 11
21 Tue 04/19/2022 Probabilistic Graphical Models Bill slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 28: Probabilstic graphical models,"
"Chapter 29: Inference in graphical models"
pset7 due
pset8 out
22 Thu 04/21/2022 Fairness / ethics in CV Emily Denton slides
lecture video
Week 12
23 Tue 04/26/2022 How to do research; How to write papers; How to give talks Bill, Phillip Bill's slides (keynote)
Bill's slides (pptx)
Bill's slides (pdf)
Phillip's slides (keynote)
Phillip's slides (pdf)
lecture video

notes:
"Chapter 41, 42, 43"
pset8 due
24 Thu 04/28/2022 Datasets, curation, biases and domain adaptation Phillip slides (keynote)
slides (pptx)
slides (pdf)
lecture video

notes:
"Chapter 32: Data bias and shift, Chapter 33a: Training for robustness, Chapter 33b: Transfer learning and adaptation"
Week 13
25 Tue 05/03/2022 Invited talk Alyosha Efros lecture video
26 Thu 05/05/2022 Final Project Presentations lecture video
Week 14
Tue 05/10/2022 Final Project Presentations Final Project Writeup due